A001164 Stirling's formula: denominators of asymptotic series for Gamma function.
1, 12, 288, 51840, 2488320, 209018880, 75246796800, 902961561600, 86684309913600, 514904800886784000, 86504006548979712000, 13494625021640835072000, 9716130015581401251840000, 116593560186976815022080000, 2798245444487443560529920000, 299692087104605205332754432000000, 57540880724084199423888850944000000
Offset: 0
Examples
Gamma(z) ~ sqrt(2 Pi) z^(z-1/2) e^(-z) (1 + 1/(12 z) + 1/(288 z^2) - 139/(51840 z^3) - 571/(2488320 z^4) + ... ), z -> infinity in |arg z| < Pi.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 267, #23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 2 and 43, equations 2:6:1 and 43:6:6 at pages 21, 415.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..295 (terms 0..100 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.37.
- S. Brassesco and M. A. Méndez, The asymptotic expansion for the factorial and Lagrange inversion formula, arXiv:1002.3894 [math.CA], 2010.
- V. De Angelis, Stirling's series revisited, Amer. Math. Monthly, 116 (2009), 839-843.
- Peter Luschny, Approximations to the factorial function.
- G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829. MR1080390 (92b:41049)
- T. Müller, Finite group actions and asymptotic expansion of e^P(z), Combinatorica, 17 (4) (1997), 523-554.
- Richard M. Slevinsky, On the use of Hahn's asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform, arXiv preprint arXiv:1602.02618 [math.NA], 2016.
- N. M. Temme, The asymptotic expansion of the incomplete gamma function, SIAM J. Math. Anal., 10 (1979), 757-766. [From _N. J. A. Sloane_, Feb 20 2012]
- Nico Temme, Uniform Asymptotics for the incomplete gamma functions starting from negative values of the parameters, arXiv:math/9603218 [math.CA], 1996.
- W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).
- Eric Weisstein's World of Mathematics, Stirlings Series
- J. W. Wrench, Jr., Concerning two series for the gamma function, Math. Comp., 22 (1968), 617-626.
Crossrefs
Programs
-
Maple
h := proc(k) option remember; local j; `if`(k=0, 1, (h(k-1)/k-add((h(k-j)*h(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end: coeffStirling := n -> h(2*n)*doublefactorial(2*n-1): seq(denom(coeffStirling(n)), n=0..16); # Peter Luschny, Nov 05 2015
-
Mathematica
Denominator[ Reverse[ Drop[ CoefficientList[ Simplify[ PowerExpand[ Normal[ Series[n!, {n, Infinity, 17}]]Exp[n]/(Sqrt[2Pi n]*n^(n - 17))]], n], 1]]] h[k_] := h[k] = If[k==0, 1, (h[k-1]/k-Sum[h[k-j]*h[j]/(j+1), {j, 1, k-1}]) / (1+1/(k+1))]; StirlingAsympt[n_] := h[2n]*2^n*Pochhammer[1/2, n]; a[n_] := StirlingAsympt[n] // Denominator; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 12 2015, after Peter Luschny *)
-
PARI
a(n)=local(A,m); if(n<1,n==0,A=vector(m=2*n+1,k,1); for(k=2,m,A[k]=(A[k-1]-sum(i=2,k-1,i*A[i]*A[k+1-i]))/(k+1)); denominator(A[m]*m!/2^n/n!)) /* Michael Somos, Jun 09 2004 */
Formula
The coefficients c_k have g.f. 1 + Sum_{k >= 1} c_k/z^k = exp( Sum_{k >= 1} B_{2k}/(2k(2k-1)z^(2k-1)) ).
Numerators/denominators: A001163(n)/A001164(n) = (6*n+1)!!/(4^n*(2*n)!) * Sum_{i=0..2*n} Sum_{j=0..i} Sum_{k=0..j} (-1)^k*2^i*k^(2*n+i+j)*C(2*n,i)* C(i,j)*C(j,k)/((2*n+2*i+1)*(2*n+i+j)!), assuming 0^0 = 1 (when n = 0), n!! = A006882(n), C(n,k) = A007318(n,k) are binomial coefficients. - Vladimir Reshetnikov, Nov 04 2015
a(n) = denominator(h(2*n)*doublefactorial(2*n-1)) where h(k) = (h(k-1)/k - Sum_{j=1..k-1} h(k-j)*h(j)/(j+1))/(1+1/(k+1)) and h(0)=1. - Peter Luschny, Nov 05 2015
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (1/n) * Sum_{k=0..n-1} B_{n-k+1}*c_k/(n-k+1) for n > 0. Then a(n) is the denominator of c_n. - Seiichi Manyama, Sep 01 2018
Extensions
More terms from Vladeta Jovovic, Nov 14 2001