cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A257634 a(n) = (A001163(n)/A001164(n))*3*(2*n)!^2/n!!.

Original entry on oeis.org

3, 1, 3, -1390, -139895, 2064875400, 999912530925, -128585633463727440, -176876516433064573125, 109242473594498195269718400, 333170810414553853376721961875, -698025623281503752808511373154720000, -4073023833462008382211035330291042675375
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 04 2015

Keywords

Comments

Coefficients in Stirling's asymptotic expansion of the Gamma function, normalized to integers using factor 3*(2*n)!^2/n!!.

Crossrefs

Programs

  • Maple
    h := proc(k) option remember; local j; `if`(k=0,1,
    (h(k-1)/k-add((h(k-j)*h(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end:
    g := n -> doublefactorial(2*n-1)*(2*n)!^2/doublefactorial(n):
    seq(3*h(2*n)*g(n), n=0..12); # Peter Luschny, Nov 05 2015
  • Mathematica
    Table[3 (2n)!^2/n!! (6n+1)!!/4^n Sum[(-1)^m 2^k StirlingS2[2n+k+m, m]/((2n+2k+1) (2n+k+m)! (2n-k)! (k-m)!), {k, 0, 2n}, {m, 0, k}], {n, 0, 12}]

Formula

a(n) = 3*(2*n)!*(6*n+1)!!/(n!!*4^n) * Sum_{i=0..2*n} Sum_{j=0..i} Sum_{k=0..j} (-1)^k*2^i*k^(2*n+i+j)*C(2*n,i)*C(i,j)*C(j,k) / ((2*n+2*i+1)*(2*n+i+j)!), assuming 0^0 = 1 (when n = 0), n!! = A006882(n), C(n,k) = A007318(n,k) are binomial coefficients.

A001163 Stirling's formula: numerators of asymptotic series for Gamma function.

Original entry on oeis.org

1, 1, 1, -139, -571, 163879, 5246819, -534703531, -4483131259, 432261921612371, 6232523202521089, -25834629665134204969, -1579029138854919086429, 746590869962651602203151, 1511513601028097903631961, -8849272268392873147705987190261, -142801712490607530608130701097701
Offset: 0

Views

Author

Keywords

Examples

			Gamma(z) ~ sqrt(2*Pi) * z^(z-1/2) * e^(-z) * (1 + 1/(12*z) + 1/(288*z^2) - 139/(51840*z^3) - 571/(2488320*z^4) + ... ), z -> infinity in |arg z| < Pi.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.37.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 267, #23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:6:1 at page 21.

Crossrefs

Cf. A001164 (denominators).
Cf. A097303 (see W. Lang link there for a similar numerator sequence which deviates for the first time at entry number 33. Expansion of GAMMA(z) in terms of 1/(k!*z^k) instead of 1/z^k).
Product_{z=1..n} z^(z^m): A143475/A143476 (m=1), A317747/A317796 (m=2), A318713/A318714 (m=3).

Programs

  • Maple
    h := proc(k) option remember; local j; `if`(k=0, 1,
    (h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
    StirlingAsympt := proc(n) option remember; h(2*n)*2^n*pochhammer(1/2, n) end:
    A001163 := n -> numer(StirlingAsympt(n));
    seq(A001163(n), n=0..30); # Peter Luschny, Feb 08 2011
  • Mathematica
    Numerator[ Reverse[ Drop[ CoefficientList[ Simplify[ PowerExpand[ Normal[ Series[n!, {n, Infinity, 17}]]Exp[n]/(Sqrt[2Pi n]*n^(n - 17))]], n], 1]]]
    (* Second program: *)
    h[k_] := h[k] = If[k==0, 1, (h[k-1]/k-Sum[h[k-j]*h[j]/(j+1), {j, 1, k-1}]) / (1+1/(k+1))];
    StirlingAsympt[n_] := h[2n]*2^n*Pochhammer[1/2, n];
    a[n_] := StirlingAsympt[n] // Numerator;
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 12 2015, after Peter Luschny *)
  • PARI
    a(n)=local(A,m); if(n<1,n==0,A=vector(m=2*n+1,k,1); for(k=2,m,A[k]=(A[k-1]-sum(i=2,k-1,i*A[i]*A[k+1-i]))/(k+1)); numerator(A[m]*m!/2^n/n!)) /* Michael Somos, Jun 09 2004 */
    
  • Sage
    def A001163(n):
        @cached_function
        def h(k):
            if k<=0: return 1
            S = sum((h(k-j)*h(j))/(j+1) for j in (1..k-1))
            return (h(k-1)/k-S)/(1+1/(k+1))
        return numerator(h(2*n)*2^n*rising_factorial(1/2,n))
    [A001163(n) for n in range(17)] # Peter Luschny, Nov 05 2015

Formula

The coefficients c_k have g.f. 1 + Sum_{k >= 1} c_k/z^k = exp( Sum_{k >= 1} B_{2k}/(2k(2k-1)z^(2k-1)) ).
Numerators/denominators: A001163(n)/A001164(n) = (6*n+1)!!/(4^n*(2*n)!) * Sum_{i=0..2*n} Sum_{j=0..i} Sum_{k=0..j} (-1)^k*2^i*k^(2*n+i+j)*C(2*n,i) *C(i,j)*C(j,k)/((2*n+2*i+1)*(2*n+i+j)!), assuming 0^0 = 1 (when n = 0), n!! = A006882(n), C(n,k) = A007318(n,k) are binomial coefficients. - Vladimir Reshetnikov, Nov 05 2015
From Seiichi Manyama, Sep 01 2018: (Start)
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (1/n) * Sum_{k=0..n-1} B_{n-k+1}*c_k/(n-k+1) for n > 0.
a(n) is the numerator of c_n. (End)

Extensions

More terms from Vladeta Jovovic, Nov 14 2001
Signs added by Robert G. Wilson v, Jul 12 2003

A144618 Denominators of an asymptotic series for the factorial function (Stirling's formula with half-shift).

Original entry on oeis.org

1, 24, 1152, 414720, 39813120, 6688604160, 4815794995200, 115579079884800, 22191183337881600, 263631258054033408000, 88580102706155225088000, 27636992044320430227456000, 39797268543821419527536640000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2009, based on email from Chris Kormanyos (ckormanyos(AT)yahoo.com)

Keywords

Comments

From Peter Luschny, Feb 24 2011 (Start):
G_n = A182935(n)/A144618(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function.
The relationship between these coefficients and the Bernoulli numbers are due to De Moivre, 1730 (see Laurie). (End)
Also denominators of polynomials mentioned in A144617.
Also denominators of polynomials mentioned in A144622.

Examples

			G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.
		

Crossrefs

Programs

  • Maple
    G := proc(n) option remember; local j,R;
    R := seq(2*j,j=1..iquo(n+1,2));
    `if`(n=0,1,add(bernoulli(j,1/2)*G(n-j+1)/(n*j),j=R)) end:
    A144618 := n -> denom(G(n)); seq(A144618(i),i=0..12);
    # Peter Luschny, Feb 24 2011
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Denominator, {n, 0, 12}] (* Jean-François Alcover, Jul 26 2013, after Maple *)

Formula

z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2) Sum_{n>=0} G_n / (z+1/2)^n.
- Peter Luschny, Feb 24 2011

Extensions

Added more terms up to polynomial number u_12, v_12 for the denominators of u_k, v_k. Christopher Kormanyos (ckormanyos(AT)yahoo.com), Jan 31 2009
Typo in definition corrected Aug 05 2010 by N. J. A. Sloane
A-number in definition corrected - R. J. Mathar, Aug 05 2010
Edited and new definition by Peter Luschny, Feb 24 2011

A317747 Numerator of the coefficient of z^(-n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^2).

Original entry on oeis.org

1, -1, 1, 259193, -1036793, -201551328007, 9137074752049, 9142431862033871923, -11105299580705049589, -11003865617473929216508154207, 114467620015003245418244743007, 32505236416490926096399421788847363, -254505521478572052318535393350091231, -1828472168539763642032546635313363411876021
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2018

Keywords

Comments

1^(1^2)*2^(2^2)*...*n^(n^2) ~ A_2*n^(n^3/3+n^2/2+n/6)*exp(-n^3/9+n/12)*(Sum_{k>=0} b(k)/n^k)^n, where A_2 is the second Bendersky constant.
a(n) is the numerator of b(n).

Examples

			1^(1^2)*2^(2^2)*...*n^(n^2) ~ A_2*n^(n^3/3+n^2/2+n/6)*exp(-n^3/9+n/12)*(1 - 1/(360*n) + 1/(259200*n^2) + 259193/(1959552000*n^3) - 1036793/(2821754880000*n^4) - 201551328007/(5079158784000000*n^5) + ... ).
		

Crossrefs

Product_{z=1..n} z^(z^m): A001163/A001164 (m=0), A143475/A143476 (m=1), A317747/A317796 (m=2).
Cf. A051675, A243262 (A_2).

Formula

Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (2/n) * Sum_{k=0..n-1} B_{n-k+3}*c_k/((n-j+1)*(n-k+2)*(n-k+3)) for n > 0.
a(n) is the numerator of c_n.

A317796 Denominator of the coefficient of z^(-n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^2).

Original entry on oeis.org

1, 360, 259200, 1959552000, 2821754880000, 5079158784000000, 76796880814080000000, 304115648023756800000000, 125121866615488512000000000, 258236518070374430146560000000000, 929651465053347948527616000000000000, 334674527419205261469941760000000000000, 920050700832433373350094438400000000000000
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2018

Keywords

Comments

1^(1^2)*2^(2^2)*...*n^(n^2) ~ A_2*n^(n^3/3+n^2/2+n/6)*exp(-n^3/9+n/12)*(Sum_{k>=0} b(k)/n^k)^n, where A_2 is the second Bendersky constant.
a(n) is the denominator of b(n).

Examples

			1^(1^2)*2^(2^2)*...*n^(n^2) ~ A_2*n^(n^3/3+n^2/2+n/6)*exp(-n^3/9+n/12)*(1 - 1/(360*n) + 1/(259200*n^2) + 259193/(1959552000*n^3) - 1036793/(2821754880000*n^4) - 201551328007/(5079158784000000*n^5) + ... ).
		

Crossrefs

Product_{z=1..n} z^(z^m): A001163/A001164 (m=0), A143475/A143476 (m=1), A317747/A317796 (m=2).
Cf. A051675, A243262 (A_2).

Formula

Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (2/n) * Sum_{k=0..n-1} B_{n-k+3}*c_k/((n-j+1)*(n-k+2)*(n-k+3)) for n > 0.
a(n) is the denominator of c_n.

A006488 Numbers n such that n! has a square number of digits.

Original entry on oeis.org

0, 1, 2, 3, 7, 12, 18, 32, 59, 81, 105, 132, 228, 265, 284, 304, 367, 389, 435, 483, 508, 697, 726, 944, 1011, 1045, 1080, 1115, 1187, 1454, 1494, 1617, 1659, 1788, 1921, 2012, 2105, 2200, 2248, 2395, 2445, 2861, 2915, 3192, 3480, 3539, 3902, 3964, 4476
Offset: 1

Views

Author

Keywords

Comments

Numbers whose square is represented by the number of digits of n!: 1, 2, 3, 4, 6, 9, 11, 13, 15, 21, 23, 24, 25, 28, 29, ..., . - Robert G. Wilson v, May 14 2014
From Bernard Schott, Jan 04 2020: (Start)
In M. Gardner's book, see reference, there is a tree printout of 105! with 169 digits, where the bottom row consists of the 25 trailing zeros of 105!. M. Gardner does not explain if this is the only factorial that can be displayed in a similar tree form.
Proof: If m! has q^2 digits, hence the number of trailing zeros in m! must be equal to 2*q-1 to satisfy this triangular look; m = 105 satisfies these two conditions with q = 13 because 105! has 13^2 = 169 digits and 2*13-1 = 25 trailing zeros.
When m < 105 and m! has q^2 digits (m <= 81), then q <= 11 and the number of trailing zeros is <= 2*q - 3.
When m > 105 and m! has q^2 digits (m >= 132), then q >= 15 and the number of trailing zeros is >= 2*q + 2.
Hence, only 105! presents such a tree printout.
1
081
39675
8240290
900504101
30580032964
9720646107774
902579144176636
57322653190990515
3326984536526808240
339776398934872029657
99387290781343681609728
0000000000000000000000000
(End)

References

  • M. Gardner, Mathematical Magic Show. Random House, NY, 1978, p. 55.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142, A027868 (trailing zeros), A034886 (number of digits), A056851.

Programs

  • Magma
    [k:k in [0..5000]| IsSquare(#Intseq(Factorial(k)))]; // Marius A. Burtea, Jan 04 2020
  • Mathematica
    LogBase10Stirling[n_] := Floor[Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5)]]; Select[ Range[ 4500], IntegerQ[ Sqrt[ (LogBase10Stirling[ # ] + 1)]] & ] (* The Mathematica coding comes from J. Stirling's expansion for the Gamma function; see the links. For more terms inside the last Log_10 function, use A001163 & A001164. Robert G. Wilson v, Apr 27 2014 *)
    Select[Range[0,4500],IntegerQ[Sqrt[IntegerLength[#!]]]&] (* Harvey P. Dale, Sep 27 2018 *)
  • PARI
    isok(n) = issquare(#Str(n!)); \\ Michel Marcus, Sep 05 2015
    

A264148 Numerators of rational coefficients related to Stirling's asymptotic series for the Gamma function.

Original entry on oeis.org

1, 2, 1, -4, 1, 8, -139, 16, -571, -8992, 163879, -334144, 5246819, 698752, -534703531, 23349012224, -4483131259, -1357305243136, 432261921612371, -6319924923392, 6232523202521089, 8773495082018816, -25834629665134204969, 49004477022654464, -1579029138854919086429
Offset: 0

Views

Author

Peter Luschny, Nov 05 2015

Keywords

Comments

The rational numbers SGGS = A264148/A264149 (SGGS stands for 'Stirling Generalized Gamma Series') are a supersequence of the coefficients in Stirling's asymptotic series for the Gamma function A001163/A001164 and of an asymptotic expansion of Ramanujan A090804/A065973, further they appear in scaled form in an expansion of -W_{-1}(-e^{-1-x^2/2}) where W_{-1} is Lambert W function A005447/A005446.
Ramanujan's asymptotic expansion theta(n) = 1/3+4/(135n)-8/(2835n^2)- ... is considered in the literature also in the form 1-theta(n) (see for example formula (5) in the Choi link). It is this form to which we refer here.

Crossrefs

A264148(n) = numerator(SGGS(n)).
A264149(n) = denominator(SGGS(n)).
A001163(n) = numerator(SGGS(2*n)) = numerator(SGGS(2*n)/2^(n+1)).
A001164(n) = denominator(SGGS(2*n)).
A090804(n) = numerator(SGGS(2*n+1)).
A065973(n) = denominator(SGGS(2*n+1)) = denominator(SGGS(2*n+1)/2^(n+1)).
A005447(n+1) = numerator(SGGS(n)/2^(n+1)).
A264150(n) = numerator(SGGS(2*n+1)/2^(n+1)).

Programs

  • Maple
    h := proc(k) option remember; local j; `if`(k<=0, 1,
    (h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
    SGGS := n -> h(n)*doublefactorial(n-1):
    A264148 := n -> numer(SGGS(n)): seq(A264148(n), n=0..24);
  • Mathematica
    h[k_] := h[k] = If[k <= 0, 1, (h[k - 1]/k - Sum[h[k - j]*h[j]/(j + 1), {j, 1, k - 1}]) / (1 + 1/(k + 1))]; a[n_] := h[n]* Factorial2[n - 1] // Numerator; Table[a[n], {n, 0, 24}]
  • Sage
    def A264148(n):
        @cached_function
        def h(k):
            if k<=0: return 1
            S = sum((h(k-j)*h(j))/(j+1) for j in (1..k-1))
            return (h(k-1)/k-S)/(1+1/(k+1))
        return numerator(h(n)*(n-1).multifactorial(2))
    print([A264148(n) for n in (0..17)])

Formula

Let SGGS(n) = h(n)*doublefactorial(n-1) where h(n) = 1 for n<=0 and for n>0 defined by the recurrence (h(k-1)/k - Sum_{j=1..k-1}((h(k-j)*h(j))/(j+1))/ (1+1/(k+1))) then a(n) = numerator(SGGS(n)).

A277000 Numerators of an asymptotic series for the Gamma function (even power series).

Original entry on oeis.org

1, -1, 19, -2561, 874831, -319094777, 47095708213409, -751163826506551, 281559662236405100437, -49061598325832137241324057, 5012066724315488368700829665081, -26602063280041700132088988446735433, 40762630349420684160007591156102493590477
Offset: 0

Views

Author

Peter Luschny, Sep 25 2016

Keywords

Comments

Let y = x+1/2 then Gamma(x+1) ~ sqrt(2*Pi)*((y/E)*Sum_{k>=0} r(k)/y^(2*k))^y as x -> oo and r(k) = A277000(k)/A277001(k) (see example 6.1 in the Wang reference).

Examples

			The underlying rational sequence starts:
1, 0, -1/24, 0, 19/5760, 0, -2561/2903040, 0, 874831/1393459200, 0, ...
		

Crossrefs

Cf. A001163/A001164 (Stirling), A182935/A144618 (De Moivre), A005146/A005147 (Stieltjes), A090674/A090675 (Lanczos), A181855/A181856 (Nemes), A182912/A182913 (NemesG), A182916/A182917 (Wehmeier), A182919/A182920 (Gosper), A182914/A182915, A277002/A277003 (odd power series).
Cf. A276667/A276668 (the arguments of the Bell polynomials).

Programs

  • Maple
    b := n -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k,1/2), k=2..n))/n!:
    A277000 := n -> numer(b(2*n)): seq(A277000(n), n=0..12);
    # Alternatively the rational sequence by recurrence:
    R := proc(n) option remember; local k; `if`(n=0, 1,
    add(bernoulli(2*m+2,1/2)* R(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end:
    seq(numer(R(n)), n=0..12); # Peter Luschny, Sep 30 2016
  • Mathematica
    CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
    b[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1/2], {k, 2, n}]]]/n!;
    a[n_] := Numerator[b[2n]];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 09 2018 *)

Formula

a(n) = numerator(b(2*n)) with b(n) = Y_{n}(0, z_2, z_3,..., z_n)/n! with z_k = k!*Bernoulli(k,1/2)/(k*(k-1)) and Y_{n} the complete Bell polynomials.
The rational numbers have the recurrence r(n) = (1/(2*n))*Sum_{m=0..n-1} Bernoulli(2*m+2,1/2)*r(n-m-1)/(2*m+1) for n>=1, r(0)=1. - Peter Luschny, Sep 30 2016

A063979 Number of decimal digits in (n!)!; A000197.

Original entry on oeis.org

1, 1, 1, 3, 24, 199, 1747, 16474, 168187, 1859934, 22228104, 286078171, 3949867548, 58284826485, 915905054360, 15276520209206, 269617872744249, 5021159048900643, 98417586560408168, 2025488254833817394, 43675043585825292775, 984729344827900257489, 23172929656443132617906
Offset: 0

Views

Author

Robert G. Wilson v, Sep 05 2001

Keywords

Crossrefs

Programs

  • Magma
    // Using about 100 more digits of precision than needed.
    nMax:=30; SetDefaultRealField(RealField(Ceiling(Log(10,Factorial(nMax))+100))); a:=[]; for n in [0..nMax] do a[n+1]:=1+Floor(LogGamma(Factorial(n)+1)/Log(10)); end for; a; // Jon E. Schoenfield, Aug 07 2015
  • Maple
    seq(length((n)!!), n=0..19); # Zerinvary Lajos, Mar 10 2007
  • Mathematica
    LogBase10Stirling[n_] := Floor[ Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5) + 5246819/(75246796800n^6)]]; (* A001163/A001164; good to at least a(1000) *) LogBase10Stirling[0] = LogBase10Stirling[1] = 0; Table[1 + LogBase10Stirling[n!], {n, 0, 101}] (* Robert G. Wilson v, Aug 05 2015 *)
  • PARI
    \\ Using 100 digits of precision.
     a(n)=localprec(100); my(t=n!);return(floor((t*log(t)-t+1/2*log(2*Pi*t)+1/(12*t))/log(10)+1))\\ Robert Gerbicz, Jul 08 2008
    

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
A correspondent reported that terms a(17) - a(19) shown here were wrong. That's not true, they are correct. The correspondent was using Python, where the default precision was not large enough to calculate these terms correctly. Thanks to Brendan McKay, Max Alekseyev and Robert Gerbicz for confirming the entries. - N. J. A. Sloane, Jul 08 2008
a(20) from Brendan McKay, Jul 08 2008
a(21)-a(22) from Hugo Pfoertner, Nov 25 2023

A182912 Numerators of an asymptotic series for the Gamma function (G. Nemes).

Original entry on oeis.org

1, 0, 1, -1, -257, -53, 5741173, 37529, -710165119, -3376971533, 360182239526821, 104939254406053, -508096766056991140541, -70637580369737593, 289375690552473442964467, 796424971106808496421869
Offset: 0

Views

Author

Peter Luschny, Feb 09 2011

Keywords

Comments

G_n = A182912(n)/A182913(n). These rational numbers provide the coefficients for an asymptotic expansion of the Gamma function.

Examples

			G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -1/12960.
		

References

  • G. Nemes, More Accurate Approximations for the Gamma Function, Thai Journal of Mathematics Volume 9(1) (2011), 21-28.

Crossrefs

Programs

  • Maple
    G := proc(n) option remember; local j,J;
    J := proc(k) option remember; local j; `if`(k=0,1,
    (J(k-1)/k-add((J(k-j)*J(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end:
    add(J(2*j)*2^j*6^(j-n)*GAMMA(1/2+j)/(GAMMA(n-j+1)*GAMMA(1/2+j-n)),j=0..n)-add(G(j)*(-4)^(j-n)*(GAMMA(n)/(GAMMA(n-j+1)*GAMMA(j))),j=1..n-1) end:
    A182912 := n -> numer(G(n)); seq(A182912(i),i=0..15);
  • Mathematica
    G[n_] := G[n] = Module[{j, J}, J[k_] := J[k] = Module[{j}, If[k == 0, 1, (J[k-1]/k - Sum[J[k-j]*J[j]/(j+1), {j, 1, k-1}])/(1+1/(k+1))]]; Sum[J[2*j]*2^j*6^(j-n)*Gamma[1/2+j]/(Gamma[n-j+1]*Gamma[1/2+j-n]), {j, 0, n}] - Sum[G[j]*(-4)^(j-n)*Gamma[n]/(Gamma[n-j+1]*Gamma[j]), {j, 1, n-1}]]; A182912[n_] := Numerator[G[n]]; Table[A182912[i], {i, 0, 15}] (* Jean-François Alcover, Jan 06 2014, translated from Maple *)

Formula

Gamma(x+1) ~ x^x e^(-x) sqrt(2Pi(x+1/6)) Sum_{n>=0} G_n / (x+1/4)^n.
Showing 1-10 of 29 results. Next