cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001189 Number of degree-n permutations of order exactly 2.

Original entry on oeis.org

0, 1, 3, 9, 25, 75, 231, 763, 2619, 9495, 35695, 140151, 568503, 2390479, 10349535, 46206735, 211799311, 997313823, 4809701439, 23758664095, 119952692895, 618884638911, 3257843882623, 17492190577599, 95680443760575, 532985208200575, 3020676745975551
Offset: 1

Views

Author

Keywords

Comments

Number of set partitions of [n] into blocks of size 2 and 1 with at least one block of size 2. - Olivier Gérard, Oct 29 2007
For n>=2, number of standard Young tableaux with height <= n - 1. That is, all tableaux (A000085) but the one with just one column. - Joerg Arndt, Oct 24 2012

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A143911, column k=2 of A080510, A182222. - Alois P. Heinz, Oct 24 2012
Column k=2 of A057731. - Alois P. Heinz, Feb 14 2013

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2) -Exp(x) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, May 14 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
          a(n-1) +(n-1) *(1+a(n-2)))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Oct 24 2012
    # alternative:
    A001189 := proc(n)
        local a,prs,p,k ;
        a := 0 ;
        for prs from 1 to n/2 do
            p := product(binomial(n-2*k,2),k=0..prs-1) ;
            a := a+p/prs!;
        end do:
        a;
    end proc:
    seq(A001189(n),n=1..13) ; # R. J. Mathar, Jan 04 2017
  • Mathematica
    RecurrenceTable[{a[1]==0,a[2]==1,a[n]==a[n-1]+(1+a[n-2])(n-1)},a[n],{n,25}] (* Harvey P. Dale, Jul 27 2011 *)
  • PARI
    {a(n) = sum(j=1,floor(n/2), n!/(j!*(n-2*j)!*2^j))}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2) - exp(x), x, 0, m); a=[factorial(n)*T.coefficient(x, n) for n in (0..m)]; a[1:] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^2/2) - exp(x).
a(n) = A000085(n) - 1.
a(n) = b(n, 2), where b(n, d)=Sum_{k=1..n} (n-1)!/(n-k)! * Sum_{l:lcm{k, l}=d} b(n-k, l), b(0, 1)=1 is the number of degree-n permutations of order exactly d.
From Henry Bottomley, May 03 2001: (Start)
a(n) = a(n-1) + (1 + a(n-2))*(n-1).
a(n) = Sum_{j=1..floor(n/2)} n!/(j!*(n-2*j)!*(2^j)). (End)