A001189 Number of degree-n permutations of order exactly 2.
0, 1, 3, 9, 25, 75, 231, 763, 2619, 9495, 35695, 140151, 568503, 2390479, 10349535, 46206735, 211799311, 997313823, 4809701439, 23758664095, 119952692895, 618884638911, 3257843882623, 17492190577599, 95680443760575, 532985208200575, 3020676745975551
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..800
- N. Chheda, M. K. Gupta, RNA as a Permutation, arXiv:1403.5477 [q-bio.BM], 2014.
- R. B. Herrera, The number of elements of given period in finite symmetric group, Amer. Math. Monthly 64, 1957, 488-490.
- L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
- J. Rangel-Mondragon, Selected Themes in Computational Non-Euclidean Geometry: Part 1, The Mathematica Journal 15 (2013); http://www.mathematica-journal.com/data/uploads/2013/07/Rangel-Mondragon_Selected-1.pdf
- Martin Svatoš, Peter Jung, Jan Tóth, Yuyi Wang, and Ondřej Kuželka, On Discovering Interesting Combinatorial Integer Sequences, arXiv:2302.04606 [cs.LO], 2023, p. 17.
- Thotsaporn Thanatipanonda, Inversions and major index for permutations, Math. Mag., April 2004.
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2) -Exp(x) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, May 14 2019 -
Maple
a:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1], a(n-1) +(n-1) *(1+a(n-2))) end: seq(a(n), n=1..30); # Alois P. Heinz, Oct 24 2012 # alternative: A001189 := proc(n) local a,prs,p,k ; a := 0 ; for prs from 1 to n/2 do p := product(binomial(n-2*k,2),k=0..prs-1) ; a := a+p/prs!; end do: a; end proc: seq(A001189(n),n=1..13) ; # R. J. Mathar, Jan 04 2017
-
Mathematica
RecurrenceTable[{a[1]==0,a[2]==1,a[n]==a[n-1]+(1+a[n-2])(n-1)},a[n],{n,25}] (* Harvey P. Dale, Jul 27 2011 *)
-
PARI
{a(n) = sum(j=1,floor(n/2), n!/(j!*(n-2*j)!*2^j))}; \\ G. C. Greubel, May 14 2019
-
Sage
m = 30; T = taylor(exp(x +x^2/2) - exp(x), x, 0, m); a=[factorial(n)*T.coefficient(x, n) for n in (0..m)]; a[1:] # G. C. Greubel, May 14 2019
Formula
E.g.f.: exp(x + x^2/2) - exp(x).
a(n) = A000085(n) - 1.
a(n) = b(n, 2), where b(n, d)=Sum_{k=1..n} (n-1)!/(n-k)! * Sum_{l:lcm{k, l}=d} b(n-k, l), b(0, 1)=1 is the number of degree-n permutations of order exactly d.
From Henry Bottomley, May 03 2001: (Start)
a(n) = a(n-1) + (1 + a(n-2))*(n-1).
a(n) = Sum_{j=1..floor(n/2)} n!/(j!*(n-2*j)!*(2^j)). (End)
Comments