A001234 Unsigned Stirling numbers of the first kind s(n,7).
1, 28, 546, 9450, 157773, 2637558, 44990231, 790943153, 14409322928, 272803210680, 5374523477960, 110228466184200, 2353125040549984, 52260903362512720, 1206647803780373360, 28939583397335447760
Offset: 7
Examples
G.f. = x^7 + 28*x^8 + 546*x^9 + 9450*x^10 + 157773*x^11 + 2637558*x^12 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 834.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=7..100
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Crossrefs
Programs
-
Maple
A001234 := proc(n) abs(combinat[stirling1](n,7)) ; end: seq(A001234(n),n=7..30) ; # R. J. Mathar, Nov 06 2009
-
Mathematica
Table[Abs[StirlingS1[n, 7]], {n, 7, 40}] (* Jean-François Alcover, Mar 24 2020 *)
-
PARI
for(n=6,50,print1(polcoeff(prod(i=1,n,x+i),6,x),","))
-
Sage
[stirling_number1(i,7) for i in range(7,22)] # Zerinvary Lajos, Jun 27 2008
Formula
Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^6; or a(n) = P^(vi)(n-1,0)/6!. - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset 7]
a(n) = det(|S(i+7,j+6)|, 1 <= i,j <= n-7), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
Extensions
More terms from R. J. Mathar, Nov 06 2009
Comments