cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001234 Unsigned Stirling numbers of the first kind s(n,7).

Original entry on oeis.org

1, 28, 546, 9450, 157773, 2637558, 44990231, 790943153, 14409322928, 272803210680, 5374523477960, 110228466184200, 2353125040549984, 52260903362512720, 1206647803780373360, 28939583397335447760
Offset: 7

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=7,n=1) ~ exp(-x)/x^7*(1 - 28/x + 546/x^2 - 9450/x^3 + 157773/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009

Examples

			G.f. = x^7 + 28*x^8 + 546*x^9 + 9450*x^10 + 157773*x^11 + 2637558*x^12 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 834.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008275 (Stirling1 triangle).

Programs

  • Maple
    A001234 := proc(n) abs(combinat[stirling1](n,7)) ; end: seq(A001234(n),n=7..30) ; # R. J. Mathar, Nov 06 2009
  • Mathematica
    Table[Abs[StirlingS1[n, 7]], {n, 7, 40}] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    for(n=6,50,print1(polcoeff(prod(i=1,n,x+i),6,x),","))
    
  • Sage
    [stirling_number1(i,7) for i in range(7,22)] # Zerinvary Lajos, Jun 27 2008

Formula

Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^6; or a(n) = P^(vi)(n-1,0)/6!. - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset 7]
a(n) = det(|S(i+7,j+6)|, 1 <= i,j <= n-7), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013

Extensions

More terms from R. J. Mathar, Nov 06 2009