cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001254 Squares of Lucas numbers.

Original entry on oeis.org

4, 1, 9, 16, 49, 121, 324, 841, 2209, 5776, 15129, 39601, 103684, 271441, 710649, 1860496, 4870849, 12752041, 33385284, 87403801, 228826129, 599074576, 1568397609, 4106118241, 10749957124, 28143753121, 73681302249, 192900153616, 505019158609, 1322157322201, 3461452808004, 9062201101801, 23725150497409
Offset: 0

Views

Author

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 36, 60.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 97.
  • Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001. [Note that Identity 34.7 on page 404 is wrong. - Alonso del Arte, Sep 07 2010]

Crossrefs

With alternating signs, cf. A075150.
Bisection of A001638 and A006499. First differences of A005970.
Second row of array A103324.

Programs

  • Magma
    [ Lucas(n)^2 : n in [0..120]]; // Vincenzo Librandi, Apr 14 2011
    
  • Maple
    with(combinat):seq(5*fibonacci(n)^2+4*(-1)^n, n=0..26)
  • Mathematica
    Table[LucasL[n]^2, {n, 0, 29}] (* Alonso del Arte, Apr 11 2011 *)
    LinearRecurrence[{2, 2, -1}, {4, 1, 9}, 33] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    a(n)=5*fibonacci(n)^2 + 4*(-1)^n \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(n)**2
    print([a(n) for n in range(33)]) # Michael S. Branicky, Apr 01 2021

Formula

a(n) = A000032(n)^2.
G.f.: ( 4-7*x-x^2 ) / ( (1+x)*(x^2-3*x+1) ). - Len Smiley, Nov 30 2001
From Ralf Stephan, Feb 08 2003: (Start)
a(n) = r^n + (1/r)^n + 2*(-1)^n, with r=(3+sqrt(5))/2.
a(n+3) = 2*a(n+2) + 2*a(n+1) - a(n). (End)
a(n) = L(2*n) + 2*(-1)^n = L(n-1)*L(n+1) + 5(-1)^n.
a(n) = 5*Fibonacci(n)^2 + 4*(-1)^n.
a(n) + a(n+1) = A106729(n). - R. J. Mathar, Nov 17 2011
E.g.f.: 2*exp(-x)*(exp(5*x/2)*cosh(sqrt(5)*x/2)+1). - Wolfdieter Lang, Jan 14 2012
a(n) = 1/4*( a(n-2) - a(n-1) - a(n+1) + a(n+2) ). The same recurrence holds for A007598. - Peter Bala, Aug 18 2015
For n>1, a(n)=(10*F(2*n-1) + 2*L(n-2)*L(n+1))/4 where F(n)=A000045(n), L(n)=A000204(n). - J. M. Bergot, Nov 25 2015
a(n) = (L(n-2)*L(n+2) + L(n-1)*L(n+1))/2 with L(k)=A000032(k). - J. M. Bergot, May 25 2017
From Peter Bala, Nov 13 2019: (Start)
Sum_{n >= 1} 1/a(n) = (1/8)*( theta_3(beta)^4 - 1 ) = A105394, where beta = (3 - sqrt(5))/2 and theta_3(q) = 1 + 2*Sum_{n >= 1} q^(n^2) is a theta function. See Borwein and Borwein, Exercise 7(f), p. 97.
Sum_{n >= 1} 1/(a(n) - 5) = (3 - sqrt(5))/6; Sum_{n >= 1} (-1)^n/(a(n) - 5) = (15 - sqrt(5))/30; Sum_{n >= 1} 1/(a(2*n) - 5) = (5 - sqrt(5))/10.
Sum_{n >= 1} 1/(a(n) - 25/a(n)) = 2/9.
Conjecture: Sum_{n >= 1} 1/(a(n) - 5*(-1)^n*F(2*k+1)^2) = 1/(2*a(2*k+1)) for k = 0,1,2,.... (End)
a(n) = 3*a(n-1) - a(n-2) + 10*(-1)^n. - Greg Dresden, May 18 2020