A181129 Smallest primes of the form (i+1)(i+2)...(h-1)(h)1234...(i-1)(i). These elements, by definition, belong to A001292.
2341, 89101234567, 45678910111213123, 23456789101112131415161718192021222324251, 30313233341234567891011121314151617181920212223242526272829, 20212223242526272829303132333435363738394041424344454612345678910111213141516171819, 42434445461234567891011121314151617181920212223242526272829303132333435363738394041, 14151617181920212223242526272829303132333435363738394041424344454647484950515212345678910111213
Offset: 1
References
- Marco Ripà, "Rudimatematici", Bookshelf, October 2010.
- M. Vassilev-Missana and K. Atanassov, "Some Smarandache problems", Hexis, 2004.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..46 (terms 1..31 from Marco Ripà)
- Kenichiro Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages.
- Kenichiro Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. [Cached copy]
- Marco Ripà, On prime factors in old and new sequences of integers, vixra, 2011.
- Marco Ripa, Patterns related to the Smarandache circular sequence primality problem, Notes Numb. Th. Discr. Math., vol. 18(1) (2012), pp. 29-48.
- Florentin Smarandache, Only Problems, Not Solutions!, Xiquan Publ., Phoenix-Chicago, 1993.
Programs
-
Python
# uses A001292gen() and imports from A001292 from sympy import isprime def agen(): yield from filter(isprime, A001292gen()) print(list(islice(agen(), 10))) # Michael S. Branicky, Jul 01 2022
Extensions
Edited by N. J. A. Sloane, Jan 25 2011
Comments