A353025 Terms of A352991 which are perfect powers.
1, 13527684, 34857216, 65318724, 73256481, 81432576, 139854276, 152843769, 157326849, 215384976, 245893761, 254817369, 326597184, 361874529, 375468129, 382945761, 385297641, 412739856, 523814769, 529874361, 537219684, 549386721, 587432169, 589324176, 597362481, 615387249, 627953481, 653927184
Offset: 1
Examples
75910168324 is a term since 75910168324 = 275518^2.
Links
- Aldo Roberto Pessolano, Table of n, a(n) for n = 1..71
- Daniel J. Bernstein, Detecting Perfect Powers in Essentially Linear Time, Mathematics of Computation. Vol. 67, 233, 1253-1283 (1998).
- Marco Ripà, On some conjectures concerning perfect powers, ResearchGate (2022).
Programs
-
Mathematica
z = 1; Do[r = Range[k]; n = ToExpression[StringJoin[ToString[#] & /@ r]]; If[And[Mod[n, 9] != 3, Mod[n, 9] != 6], d = DigitCount[n]; s = IntegerPart[Sqrt[10^(IntegerLength[n] - 1)]]; f = IntegerPart[Sqrt[10^(IntegerLength[n])]]; Do[y = x^2; If[DigitCount[y] == d, c = True; Do[If[Not[StringContainsQ[ToString[y], ToString[i]]], c = False], {i, 10, k}]; If[c, Print[z, " ", y]; z++]], {x, s, f}]], {k, 1, 10}] (* Aldo Roberto Pessolano, May 12 2022 *)
Formula
Digit sum of a(n) is always congruent to 0 or 1 modulo 9.
a(n) = m^2, where the integer m := m(n) is not a perfect power itself (conjectured).
Comments