A001370 Sum of digits of 2^n.
1, 2, 4, 8, 7, 5, 10, 11, 13, 8, 7, 14, 19, 20, 22, 26, 25, 14, 19, 29, 31, 26, 25, 41, 37, 29, 40, 35, 43, 41, 37, 47, 58, 62, 61, 59, 64, 56, 67, 71, 61, 50, 46, 56, 58, 62, 70, 68, 73, 65, 76, 80, 79, 77, 82, 92, 85, 80, 70, 77
Offset: 0
References
- Archimedeans Problems Drive, Eureka, 26 (1963), 12.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Zak Seidov, Table of n, a(n) for n = 0..10000
- David Radcliffe, The growth of digital sums of powers of two. Preprint, 2015.
- David G. Radcliffe, The growth of digital sums of powers of two, arXiv:1605.02839 [math.NT], 2016.
- W. Sierpiński, 250 Problems in Elementary Number Theory, 1970.
- C. L. Stewart, On the representation of an integer in two different bases, Journal für die reine und angewandte Mathematik 319 (1980): 63-72.
Crossrefs
Programs
-
Haskell
a001370 = a007953 . a000079 -- Reinhard Zumkeller, Aug 14 2015
-
Maple
seq(convert(convert(2^n,base,10),`+`),n=0..1000); # Robert Israel, Mar 29 2015
-
Mathematica
Table[Total[IntegerDigits[2^n]], {n, 0, 55}] (* Vincenzo Librandi, Oct 08 2013 *)
-
PARI
a(n)=sumdigits(2^n); \\ Michel Marcus, Nov 01 2013
-
Python
[sum(map(int, str(2**n))) for n in range(56)] # David Radcliffe, Mar 29 2015
Comments