A001486 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^8 in powers of x.
1, -8, 28, -56, 62, 0, -148, 328, -419, 280, 140, -728, 1232, -1336, 848, 224, -1582, 2688, -3072, 2408, -742, -1568, 3836, -5264, 5306, -3744, 924, 2576, -5686, 7792, -8092, 6272, -2751, -1848, 6008, -9296, 10556, -9800, 6692, -2240, -3206, 8168, -11524
Offset: 8
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..10000
- H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
- H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy)
Programs
-
Magma
m:=102; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^8 )); // G. C. Greubel, Sep 04 2023 -
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) end: a:= n-> b(n, 8): seq(a(n), n=8..50); # Alois P. Heinz, Feb 07 2021
-
Mathematica
nmax=50; CoefficientList[Series[(Product[(1 -(-x)^j), {j,nmax}] -1)^8, {x,0,nmax}], x]//Drop[#,8] & (* Ilya Gutkovskiy, Feb 07 2021 *) Drop[CoefficientList[Series[(QPochhammer[-x] -1)^8, {x,0,102}], x], 8] (* G. C. Greubel, Sep 04 2023 *)
-
PARI
my(N=55,x='x+O('x^N)); Vec((eta(-x)-1)^8) \\ Joerg Arndt, Sep 05 2023
-
SageMath
from sage.modular.etaproducts import qexp_eta m=100; k=8; def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k def A001486_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(k,x) ).list() a=A001486_list(m); a[k:] # G. C. Greubel, Sep 04 2023
Formula
a(n) = [x^n]( QPochhammer(-x) - 1 )^8. - G. C. Greubel, Sep 04 2023
Extensions
Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021