cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001521 a(1) = 1; thereafter a(n+1) = floor(sqrt(2*a(n)*(a(n)+1))).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 54, 77, 109, 154, 218, 309, 437, 618, 874, 1236, 1748, 2472, 3496, 4944, 6992, 9888, 13984, 19777, 27969, 39554, 55938, 79108, 111876, 158217, 223753, 316435, 447507, 632871, 895015, 1265743, 1790031, 2531486, 3580062, 5062972
Offset: 1

Views

Author

Keywords

Comments

Graham and Pollak give an elementary proof of the following result: For given m, define a(n) by a(1) = m and a(n+1) = floor(sqrt(2*a_n*(a_n + 1))), n >= 1. Then a(n) = tau_m(2^((n-1)/2) + 2^((n-2)/2)) where tau_m is the m-th smallest element of {1, 2, 3, ... } union { sqrt(2), 2*sqrt(2), 3*sqrt(2), ... }. For m=1 it follows as a curious corollary that a(2n+1) - 2*a(2n-1) is exactly the n-th bit in the binary expansion of sqrt(2) (A004539).
a(n) is also the curvature (rounded down) of the circle inscribed in the n-th 45-45-90 triangle arranged in a spiral as shown in the illustration in the links section. - Kival Ngaokrajang, Aug 21 2013

References

  • R. L. Graham, D. E. Knuth and O. Pataschnic, Concrete Mathematics, Addison-Wesley, Reading (1994) 2nd Ed., Ex. 3.46.
  • F. K. Hwang, and Shen Lin. "An analysis of Ford and Johnson's sorting algorithm." In Proc. Third Annual Princeton Conf. on Inform. Sci. and Systems, pp. 292-296. 1969.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000196.
First, second, and third differences give A017911, A190660, A241576.

Programs

  • Haskell
    a001521 n = a001521_list !! (n-1)
    a001521_list = 1 : (map a000196 $ zipWith (*)
                        (map (* 2) a001521_list) (map (+ 1) a001521_list))
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    [Floor(Sqrt(2)^(n-1)+Sqrt(2)^(n-2)): n in [1..45]]; // Vincenzo Librandi, May 24 2015
    
  • Maple
    Digits:=200;
    f:=proc(n) option remember;
    if n=1 then 1 else floor(sqrt(2*f(n-1)*(f(n-1)+1))); fi; end;
    [seq(f(n),n=1..200)];
  • Mathematica
    With[{c=Sqrt[2]},Table[Floor[c^(n-1)+c^(n-2)],{n,1,50}]] (* Harvey P. Dale, May 11 2011 *)
    NestList[Floor[Sqrt[2#(#+1)]]&,1,50] (* Harvey P. Dale, Aug 28 2013 *)
  • PARI
    a(n)=if(n>1, sqrtint(2^(n-1)) + sqrtint(2^(n-2)), 1) \\ Charles R Greathouse IV, Nov 27 2016
    
  • PARI
    first(n)=my(v=vector(n)); v[1]=1; for(k=2,n, v[k]=sqrtint(2*(v[k-1]+1)*v[k-1])); v \\ Charles R Greathouse IV, Jan 23 2020
  • Sage
    [floor(sqrt(2)^(n-1))+ floor(sqrt(2)^(n-2)) for n in (1..50)] # Bruno Berselli, May 25 2015
    

Formula

a(n) = floor( sqrt(2)^(n-1) ) + floor( sqrt(2)^(n-2) ), n>1. - Ralf Stephan, Sep 18 2004
k * sqrt(2)^n - 2 < a(n) < k * sqrt(2)^n, where k = (1 + sqrt(2))/2 = A174968 = 1.2071.... Probably the first inequality can be improved (!). - Charles R Greathouse IV, Jan 23 2020

Extensions

Additional comments from Torsten Sillke, Apr 06 2001