A001522 Number of n-stacks with strictly receding walls, or the number of Type A partitions of n in the sense of Auluck (1951).
1, 1, 1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 35, 47, 62, 82, 107, 139, 179, 230, 293, 372, 470, 591, 740, 924, 1148, 1422, 1756, 2161, 2651, 3244, 3957, 4815, 5844, 7075, 8545, 10299, 12383, 14859, 17794, 21267, 25368, 30207, 35902, 42600, 50462, 59678, 70465, 83079, 97800, 114967, 134956, 158205, 185209, 216546, 252859
Offset: 0
Examples
For a(6)=5 we have the following stacks: .x... ..x.. ...x. .xx. xxxxx xxxxx xxxxx xxxx xxxxxx . From _Joerg Arndt_, Dec 09 2012: (Start) There are a(9) = 14 smooth weakly unimodal compositions of 9: 01: [ 1 1 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 1 2 1 ] 03: [ 1 1 1 1 1 2 1 1 ] 04: [ 1 1 1 1 2 1 1 1 ] 05: [ 1 1 1 1 2 2 1 ] 06: [ 1 1 1 2 1 1 1 1 ] 07: [ 1 1 1 2 2 1 1 ] 08: [ 1 1 2 1 1 1 1 1 ] 09: [ 1 1 2 2 1 1 1 ] 10: [ 1 1 2 2 2 1 ] 11: [ 1 2 1 1 1 1 1 1 ] 12: [ 1 2 2 1 1 1 1 ] 13: [ 1 2 2 2 1 1 ] 14: [ 1 2 3 2 1 ] (End) From _Joerg Arndt_, Jun 11 2013: (Start) There are a(9) = 14 weakly unimodal compositions of 9 where the maximal part m appears at least m times: 01: [ 1 1 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 2 2 ] 03: [ 1 1 1 1 2 2 1 ] 04: [ 1 1 1 2 2 1 1 ] 05: [ 1 1 1 2 2 2 ] 06: [ 1 1 2 2 1 1 1 ] 07: [ 1 1 2 2 2 1 ] 08: [ 1 2 2 1 1 1 1 ] 09: [ 1 2 2 2 1 1 ] 10: [ 1 2 2 2 2 ] 11: [ 2 2 1 1 1 1 1 ] 12: [ 2 2 2 1 1 1 ] 13: [ 2 2 2 2 1 ] 14: [ 3 3 3 ] (End) From _Joerg Arndt_, Mar 30 2014: (Start) There are a(9) = 14 compositions of 9 with first part 1, maximal up-step 1, and no consecutive up-steps: 01: [ 1 1 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 1 1 2 ] 03: [ 1 1 1 1 1 1 2 1 ] 04: [ 1 1 1 1 1 2 1 1 ] 05: [ 1 1 1 1 1 2 2 ] 06: [ 1 1 1 1 2 1 1 1 ] 07: [ 1 1 1 1 2 2 1 ] 08: [ 1 1 1 2 1 1 1 1 ] 09: [ 1 1 1 2 2 1 1 ] 10: [ 1 1 1 2 2 2 ] 11: [ 1 1 2 1 1 1 1 1 ] 12: [ 1 1 2 2 1 1 1 ] 13: [ 1 1 2 2 2 1 ] 14: [ 1 1 2 2 3 ] (End) G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
References
- G. E. Andrews, The reasonable and unreasonable effectiveness of number theory in statistical mechanics, pp. 21-34 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
- G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686.
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs (annotated scanned copy)
- A. Blecher and A. Knopfmacher, Fixed points and matching points in partitions, Ramanujan J. 58 (2022), 23-41.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Erich Friedman, Illustration of initial terms
- A. D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003 [math.CO], 2011.
- E. M. Wright, Stacks, III, Quart. J. Math. Oxford, 23 (1972), 153-158.
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n<=0, `if`(i=1, 1, 0), `if`(n<0 or i<1, 0, b(n-i, i, t)+b(n-(i-1), i-1, false)+ `if`(t, b(n-(i+1), i+1, t), 0))) end: a:= n-> b(n-1, 1, true): seq(a(n), n=0..70); # Alois P. Heinz, Feb 26 2014 # second Maple program: A001522 := proc(n) local r,a; a := 0 ; if n = 0 then return 1 ; end if; for r from 1 do if r*(r+1) > 2*n then return a; else a := a-(-1)^r*combinat[numbpart](n-r*(r+1)/2) ; end if; end do: end proc: # R. J. Mathar, Mar 07 2015
-
Mathematica
max = 50; f[x_] := 1 + Sum[-(-1)^k*x^(k*(k+1)/2), {k, 1, max}] / Product[(1-x^k), {k, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *) b[n_, i_, t_] := b[n, i, t] = If[n <= 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, b[n-i, i, t] + b[n - (i-1), i-1, False] + If[t, b[n - (i+1), i+1, t], 0]]]; a[n_] := b[n-1, 1, True]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 01 2015, after Alois P. Heinz *) Flatten[{1, Table[Sum[(-1)^(j-1)*PartitionsP[n-j*((j+1)/2)], {j, 1, Floor[(Sqrt[8*n + 1] - 1)/2]}], {n, 1, 60}]}] (* Vaclav Kotesovec, Sep 26 2016 *) ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}]; Table[If[n==0,1,Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],OddQ@*Length],ici]]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
-
PARI
{a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1+8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n)), n))}; /* Michael Somos, Jul 22 2003 */
-
PARI
N=66; q='q+O('q^N); Vec( 1 + sum(n=1, N, q^(n^2)/(prod(k=1,n-1,1-q^k)^2*(1-q^n)) ) ) \\ Joerg Arndt, Dec 09 2012
-
Sage
def A001522(n): if n < 4: return 1 return (number_of_partitions(n) - [p.crank() for p in Partitions(n)].count(0))/2 [A001522(n) for n in range(30)] # Peter Luschny, Sep 15 2014
Formula
G.f.: 1 + ( Sum_{k>=1} -(-1)^k * x^(k*(k+1)/2) ) / ( Product_{k>=1} 1-x^k ).
G.f.: 1 + ( Sum_{n>=1} q^(n^2) / ( ( Product_{k=1..n-1} 1-q^k )^2 * (1-q^n) ) ). - Joerg Arndt, Dec 09 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) [Auluck, 1951]. - Vaclav Kotesovec, Sep 26 2016
Extensions
a(0) changed from 0 to 1 by Joerg Arndt, Mar 30 2014
Edited definition. - N. J. A. Sloane, Mar 31 2021
Comments