A001524 Number of stacks, or arrangements of n pennies in contiguous rows, each touching 2 in row below.
1, 1, 1, 2, 3, 5, 8, 12, 18, 26, 38, 53, 75, 103, 142, 192, 260, 346, 461, 607, 797, 1038, 1348, 1738, 2234, 2856, 3638, 4614, 5832, 7342, 9214, 11525, 14369, 17863, 22142, 27371, 33744, 41498, 50903, 62299, 76066, 92676, 112666, 136696, 165507, 200018
Offset: 0
Examples
For a(6)=8 we have the following stacks: ..x .xx .xx. ..xx .x... ..x.. ...x. ....x xxx xxxx xxxx xxxxx xxxxx xxxxx xxxxx xxxxxx From _Franklin T. Adams-Watters_, Jan 18 2007: (Start) For a(7) = 12 we have the following stacks: ..x. ...x .xx. ..xx .xxx .xx.. ..xx. ...xx xxxx xxxx xxxx xxxxx xxxxx xxxxx and .x.... ..x... ...x.. ....x. .....x xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxxx (End)
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686.
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs (annotated scanned copy)
- J. S. Birman, Letter to N. J. A. Sloane, Apr 09 1994
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Erich Friedman, Illustration of initial terms
- H. W. Gould, R. K. Guy, and N. J. A. Sloane, Correspondence, 1987.
- D. Gouyou-Beauchamps and P. Leroux, Enumeration of symmetry classes of convex polyominoes on the honeycomb lattice, arXiv:math/0403168 [math.CO], 2004.
- R. K. Guy, Letter to N. J. A. Sloane, Apr 08 1988 (annotated scanned copy, included with permission)
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20.
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
- B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
- E. M. Wright, Stacks, III, Quart. J. Math. Oxford, 23 (1972), 153-158.
Programs
-
Maple
s := 1+sum(z^(n*(n+1)/2)/((1-z^(n))*product((1-z^i), i=1..n-1)^2), n=1..50): s2 := series(s, z, 300): for j from 1 to 100 do printf(`%d,`,coeff(s2, z, j)) od: # James Sellers, Feb 27 2001 # second Maple program: b:= proc(n, i) option remember; `if`(i>n, 0, `if`( irem(n, i)=0, 1, 0)+add(j*b(n-i*j, i+1), j=1..n/i)) end: a:= n-> `if`(n=0, 1, b(n, 1)): seq(a(n), n=0..100); # Alois P. Heinz, Oct 03 2018
-
Mathematica
m = 45; CoefficientList[ Series[Sum[ z^(n*(n+1)/2)/((1-z^(n))*Product[(1-z^i), {i, 1, n-1}]^2), {n, 1, m}], {z, 0, m}], z] // Prepend[Rest[#], 1] & (* Jean-François Alcover, May 19 2011, after Maple prog. *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum( k=0,(sqrt(8*n + 1) - 1) / 2, x^((k^2 + k) / 2) / prod( i=1, k, (1 - x^i + x * O(x^n))^((i
Michael Somos, Apr 27 2003 */
Formula
G.f.: sum(n>=1, q^(n*(n+1)/2) / prod(k=1..n-1, 1-q^k)^2 / (1-q^n) ). [Joerg Arndt, Jun 28 2013]
From Vaclav Kotesovec, Mar 03 2020: (Start)
Pi * sqrt(2/3) <= n^(-1/2)*log(a(n)) <= Pi * sqrt(5/6). [Auluck, 1951]
log(a(n)) ~ 2*Pi*sqrt(n/5). [Wright, 1971]
a(n) ~ exp(2*Pi*sqrt(n/5)) / (sqrt(2) * 5^(3/4) * (1 + sqrt(5)) * n). (End)
Extensions
Corrected by R. K. Guy, Apr 08 1988
More terms from James Sellers, Feb 27 2001
Comments