cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001539 a(n) = (4*n+1)*(4*n+3).

Original entry on oeis.org

3, 35, 99, 195, 323, 483, 675, 899, 1155, 1443, 1763, 2115, 2499, 2915, 3363, 3843, 4355, 4899, 5475, 6083, 6723, 7395, 8099, 8835, 9603, 10403, 11235, 12099, 12995, 13923, 14883, 15875, 16899, 17955, 19043, 20163, 21315, 22499, 23715, 24963, 26243, 27555, 28899
Offset: 0

Views

Author

Keywords

Comments

Sequence arises from reading the line from 3, in the direction 3, 35, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
log(sqrt(2)+1)/sqrt(2) = 0.62322524... = 2/3 - 2/35 + 2/99 - 2/195 + 2/323, ... = (1 - 1/3) + (1/7 - 1/5) + (1/9 - 1/11) + (1/15 - 1/13) + (1/17 - 1/19) + (1/23 - 1/21) + ... - Gary W. Adamson, Mar 01 2009
Numbers k such that k+1 is a square and k+5 is divisible by 8. - Bruno Berselli, Sep 27 2017
The concatenation of 8*A000217(n) and 99 is a term of the sequence. Example: for A000217(5) = 15, 8*15 = 120 and 12099 = a(27). In general, a(5*n+2) = 800*A000217(n) + 99. - Bruno Berselli, Sep 29 2017

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3 + 26 x + 3 x^2)/(1 - x)^3, {x, 0, 41}], x] (* or *) Table[(4 n + 1) (4 n + 3), {n, 0, 41}] (* Michael De Vlieger, Sep 29 2017 *)
  • Maxima
    makelist((4*n+1)*(4*n+3), n, 0, 30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=(4*n+1)*(4*n+3) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = A016826(n) - 1 = (A001533(n)+5)/4 = (A001538(n)+16)/9.
Sum_{k>=0} 1/a(k) = Pi/8. - Benoit Cloitre, Aug 20 2002
G.f.: (3 + 26*x + 3*x^2)/(1 - x)^3. - Jaume Oliver Lafont, Mar 07 2009
a(n) = 32*n + a(n-1) for n > 0, a(0)=3. - Vincenzo Librandi, Nov 12 2010
a(n) = a(m) + 16*(n-m)*(n+m+1). The previous formula is obtained for m = n-1. - Bruno Berselli, Sep 29 2017
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A016813(n)*A004767(n).
Product_{n>=0} (1 - 1/a(n)) = sqrt(2)*cos(Pi/(2*sqrt(2))).
Product_{n>=0} (1 + 1/a(n)) = sqrt(2). (End)
From Elmo R. Oliveira, Oct 23 2024: (Start)
E.g.f.: exp(x)*(3 + 16*x*(2 + x)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)