cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001540 Number of transpositions needed to generate permutations of length n.

Original entry on oeis.org

0, 2, 8, 36, 184, 1110, 7776, 62216, 559952, 5599530, 61594840, 739138092, 9608795208, 134523132926, 2017846993904, 32285551902480, 548854382342176, 9879378882159186, 187708198761024552, 3754163975220491060, 78837443479630312280, 1734423756551866870182
Offset: 1

Views

Author

Keywords

Examples

			a(5)=-1+5!(1+1/2!+1/4!)=-1+120+60+5=184.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A009179.

Programs

  • GAP
    a:=[0];; for n in [2..20] do a[n]:=n*a[n-1]+n-(n mod 2); od; a; # Muniru A Asiru, Dec 05 2018
  • J
    a001540=:13 : '<:+/(!y)%!+:i.>:<.-:y' NB. Stephen Makdisi, May 02 2018
    
  • Magma
    [-1 + (&+[Factorial(n)/Factorial(2*k): k in [0..Floor(n/2)]]): n in [1..20]]; // G. C. Greubel, Nov 28 2018
    
  • Maple
    a := n -> (exp(1)*GAMMA(1 + n, 1) + exp(-1)*GAMMA(1 + n, -1))/2 - 1:
    seq(simplify(a(n)), n=1..20); # Peter Luschny, Dec 05 2018
  • Mathematica
    With[{nn=20},Rest[CoefficientList[Series[Cosh[x]/(1-x)-Exp[x],{x,0,nn}],x]Range[0,nn]!]] (* Harvey P. Dale, Mar 04 2013 *)
  • PARI
    a(n)=-1+n!*sum(k=0,floor(n/2),1/(2*k)!)
    
  • Sage
    [-1 + factorial(n)*sum(1/factorial(2*k) for k in range(floor((n+2)/2))) for n in (1..20)] # G. C. Greubel, Nov 28 2018
    

Formula

E.g.f.: cosh(x)/(1-x) - exp(x).
Recurrence: a(n) = n*a(n-1) + n - (n mod 2).
a(n) = -1 + n!*Sum{k=0..floor(n/2)} 1/(2*k)! = -1 + round(n! * cosh(1)).
a(n) = |A009179(n)| - 1 = (n-1)*|A009179(n-1) - A009179(n-2)|.
a(n) ~ [cosh(1)*n!] - 1, where [x] is the floor of x. - Simon Plouffe, Nov 28 2018

Extensions

Edited by Ralf Stephan, Apr 16 2004