A001540 Number of transpositions needed to generate permutations of length n.
0, 2, 8, 36, 184, 1110, 7776, 62216, 559952, 5599530, 61594840, 739138092, 9608795208, 134523132926, 2017846993904, 32285551902480, 548854382342176, 9879378882159186, 187708198761024552, 3754163975220491060, 78837443479630312280, 1734423756551866870182
Offset: 1
Examples
a(5)=-1+5!(1+1/2!+1/4!)=-1+120+60+5=184.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 100 terms from T. D. Noe)
- R. J. Ord-Smith, Generation of permutation sequences: Part 1, Computer J., 13 (1970), 151-155.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Crossrefs
Cf. A009179.
Programs
-
GAP
a:=[0];; for n in [2..20] do a[n]:=n*a[n-1]+n-(n mod 2); od; a; # Muniru A Asiru, Dec 05 2018
-
J
a001540=:13 : '<:+/(!y)%!+:i.>:<.-:y' NB. Stephen Makdisi, May 02 2018
-
Magma
[-1 + (&+[Factorial(n)/Factorial(2*k): k in [0..Floor(n/2)]]): n in [1..20]]; // G. C. Greubel, Nov 28 2018
-
Maple
a := n -> (exp(1)*GAMMA(1 + n, 1) + exp(-1)*GAMMA(1 + n, -1))/2 - 1: seq(simplify(a(n)), n=1..20); # Peter Luschny, Dec 05 2018
-
Mathematica
With[{nn=20},Rest[CoefficientList[Series[Cosh[x]/(1-x)-Exp[x],{x,0,nn}],x]Range[0,nn]!]] (* Harvey P. Dale, Mar 04 2013 *)
-
PARI
a(n)=-1+n!*sum(k=0,floor(n/2),1/(2*k)!)
-
Sage
[-1 + factorial(n)*sum(1/factorial(2*k) for k in range(floor((n+2)/2))) for n in (1..20)] # G. C. Greubel, Nov 28 2018
Formula
E.g.f.: cosh(x)/(1-x) - exp(x).
Recurrence: a(n) = n*a(n-1) + n - (n mod 2).
a(n) = -1 + n!*Sum{k=0..floor(n/2)} 1/(2*k)! = -1 + round(n! * cosh(1)).
a(n) ~ [cosh(1)*n!] - 1, where [x] is the floor of x. - Simon Plouffe, Nov 28 2018
Extensions
Edited by Ralf Stephan, Apr 16 2004