A001557 a(n) = 1^n + 2^n + ... + 10^n.
10, 55, 385, 3025, 25333, 220825, 1978405, 18080425, 167731333, 1574304985, 14914341925, 142364319625, 1367428536133, 13202860761145, 128037802953445, 1246324856379625, 12170706132009733, 119179318935377305, 1169842891165484965, 11506994510201252425
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 370.
- Index entries for linear recurrences with constant coefficients, signature (55, -1320, 18150, -157773, 902055, -3416930, 8409500, -12753576, 10628640, -3628800).
Programs
-
Mathematica
Table[Total[Range[10]^n], {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
-
Python
def A001557(n): return sum(i**n for i in range(1,11)) # Chai Wah Wu, Oct 24 2024
Formula
a(n) = Sum_{j=1..10} j^n, n >= 0.
E.g.f.: exp(x) + exp(2*x) + exp(3*x) + exp(4*x) + exp(5*x) + exp(6*x) + exp(7*x) + exp(8*x) + exp(9*x) + exp(10*x). - Vladeta Jovovic, May 08 2002
From Wolfdieter Lang, Oct 15 2011: (Start)
O.g.f.: (2 - 11*x) *(5 - 220*x + 4070*x^2 - 41140*x^3 + 247049*x^4 - 896368*x^5 + 1903836*x^6 - 2143152*x^7 + 966240*x^8)/Product_{j=1..10} (1 - j*x).
From the e.g.f. via Laplace transformation. See the proof in a link under A196837.
(End)
Extensions
More terms from Jon E. Schoenfield, Mar 24 2010
Comments