cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001559 a(0) = 1, a(1) = 4; thereafter a(n)*(2n + 10) - a(n-1)*(11n + 35) + a(n-2)*(8n + 2) + a(n-3)*(15n + 7) + a(n-4)*(4n - 2) = 0.

Original entry on oeis.org

1, 4, 15, 54, 193, 690, 2476, 8928, 32358, 117866, 431381, 1585842, 5853849, 21690378, 80650536, 300845232, 1125555054, 4222603968, 15881652606, 59873283372, 226214536506, 856431978324, 3248562071800, 12344168149224, 46984664348488, 179114048943078
Offset: 0

Views

Author

Keywords

Comments

Apparently, the number of hill-free Dyck (n+4)-paths with at least two returns. E.g., the a(1)=4 hill-free 5-paths are UUUDDDUUDD, UUDUDDUUDD, UUDDUUUDDD and UUDDUUDUDD with 2 returns each. - David Scambler, Aug 26 2012

Examples

			G.f. = 1 + 4*x + 15*x^2 + 54*x^3 + 193*x^4 + 690*x^5 + 2476*x^6 + 8928*x^7 + ...
		

References

  • Terrence Fine, Extrapolation when very little is known about the source. Information and Control 16 (1970), 331-359.
  • Ki Hang Kim, Douglas G. Rogers, and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013) - From N. J. A. Sloane, Jun 05 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(1-4*x +x^2+2*x^3 +(1-2*x-x^2)*Sqrt(1-4*x)) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    nn = 20; a[-2] = 0; a[-1] = 0; a[0] = 1; a[1] = 4; Do[a[n] = (a[n - 1]*(11*n + 35) - a[n - 2]*(8*n + 2) - a[n - 3]*(15*n + 7) - a[n - 4]*(4*n - 2))/(2*n + 10), {n, 2, nn}]; Table[a[n], {n, 0, nn}] (* T. D. Noe, May 09 2012 *)
    CoefficientList[Series[2/(1-4*x+x^2+2*x^3 +(1-2*x-x^2)*Sqrt[1-4*x]), {x,0,30}], x] (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 / (1 - 4*x + x^2 + 2*x^3 + (1 - 2*x - x^2) * sqrt(1 - 4*x + x*O(x^n))), n))}; /* Michael Somos, Jul 14 2009 */
    
  • Sage
    (2/(1-4*x+x^2+2*x^3 +(1-2*x-x^2)*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019

Formula

0 = -a(n) * n * (2*n + 10) * (7*n + 13) + a(n-1) * (49*n^3 + 252*n^2 + 419*n + 240) + a(n-2) * (2*n + 2) * (2*n + 3) * (7*n + 20). - Michael Somos, Jul 14 2009
G.f.: 2 / (1 - 4*x + x^2 + 2*x^3 + (1 - 2*x - x^2) * sqrt(1 - 4*x )). - Michael Somos, Jul 14 2009
(n+4)*a(n) = (-(15/2)*n + 4)*a(n-3) + ((11/2)*n + 12)*a(n-1)
+ (-4*n + 3)*a(n-2) + (-2*n + 3)*a(n-4). - Simon Plouffe, Feb 09 2012
a(n) ~ 7*2^(2*n+6)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
0 = a(n) * (-112336*a(n+1) - 30270*a(n+2) - 88504*a(n+3) - 845858*a(n+4) + 217516*a(n+5)) + a(n+1) * (-14042*a(n+1) + 440283*a(n+2) - 328994*a(n+3) - 731173*a(n+4) + 230486*a(n+5)) + a(n+2) * (38900*a(n+2) - 812130*a(n+3) + 1877788*a(n+4) - 386672*a(n+5)) + a(n+3) * (-535412*a(n+3) - 86596*a(n+4) + 44840*a(n+5)) if n > -3. - Michael Somos, Apr 03 2014

Extensions

Better definition and more terms from Michael Somos, Jul 14 2009