A001594 a(n) = 6^n + n^6.
1, 7, 100, 945, 5392, 23401, 93312, 397585, 1941760, 10609137, 61466176, 364568617, 2179768320, 13065520825, 78371693632, 470196375201, 2821126684672, 16926683582305, 101559990680640, 609359787056377
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-63,161,-245,231,-133,43,-6).
Crossrefs
Programs
-
Magma
[6^n+n^6: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011
-
Maple
seq(seq(k^n+n^k, k=6..6), n=0..19); # Zerinvary Lajos, Jun 29 2007
-
Mathematica
Table[6^n + n^6, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 6 x + 72 x^2 - 75 x^3 - 1475 x^4 - 1776 x^5 - 334 x^6 - 7 x^7)/((1-x)^7 (1-6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 28 2014 *) LinearRecurrence[{13,-63,161,-245,231,-133,43,-6},{1,7,100,945,5392,23401,93312,397585},20] (* Harvey P. Dale, Jan 07 2023 *)
-
PARI
a(n)=6^n+n^6 \\ Charles R Greathouse IV, Feb 14 2011
-
Sage
[6^n+n^6 for n in (0..30)] # Bruno Berselli, Aug 28 2014
Formula
G.f.: (1 - 6*x + 72*x^2 - 75*x^3 - 1475*x^4 - 1776*x^5 - 334*x^6 - 7*x^7)/((1-x)^7*(1-6*x)). - Vincenzo Librandi, Aug 28 2014