cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001611 a(n) = Fibonacci(n) + 1.

Original entry on oeis.org

1, 2, 2, 3, 4, 6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156
Offset: 0

Views

Author

Keywords

Comments

a(0) = 1, a(1) = 2 then the largest number such that a triangle is constructible with three successive terms as sides. - Amarnath Murthy, Jun 03 2003
a(n+2) = A^(n)B(1), n>=0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 2=`0`, 3=`10`, 4=`110`, 6=`1110`, ..., in Wythoff code.
The first-difference sequence is the Fibonacci sequence (A000045). - Roland Schroeder (florola(AT)gmx.de), Aug 05 2010
2 and 3 are the only primes in this sequence.
a(n) is the number of 1 X n nonogram puzzles which can be solved uniquely. See A242876 for puzzle definition. - Lior Manor, Jan 23 2022

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001611 = (+ 1) . a000045
    a001611_list = 1 : 2 : map (subtract 1)
                           (zipWith (+) a001611_list $ tail a001611_list)
    -- Reinhard Zumkeller, Jul 30 2013
  • Magma
    [Fibonacci(n)+1: n in [1..37]]; // Bruno Berselli, Jul 26 2011
    
  • Maple
    A001611:=-(-1+2*z**2)/(z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation
    with(combinat): seq((fibonacci(n)+1), n=0..35);
  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n-2] + a[n-1] - 1; Table[ a[n], {n, 0, 40} ]
    Fibonacci[Range[0,50]]+1  (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    a(n)=fibonacci(n)+1 \\ Charles R Greathouse IV, Jul 25 2011
    

Formula

G.f.: (1-2*x^2)/(1-2*x+x^3).
a(n) = 2*a(n-1) - a(n-3). - Tanya Khovanova, Jul 13 2007
a(0) = 1, a(1) = 2, a(n) = a(n - 2) + a(n - 1) - 1.
F(4*n) + 1 = F(2*n-1)*L(2*n+1); F(4*n+1) + 1 = F(2*n+1)*L(2*n); F(4*n+2) + 1 = F(2*n+2)*L(2*n); F(4*n+3) + 1 = F(2*n+1)*L(2*n+2) where F(n)=Fibonacci(n) and L(n)=Lucas(n). - R. K. Guy, Feb 27 2003
a(1) = 2; a(n+1)=floor(a(n)*(sqrt(5)+1)/2). - Roland Schroeder (florola(AT)gmx.de), Aug 05 2010
a(n) = Sum_{k=0..n+1} Fibonacci(k-3). - Ehren Metcalfe, Apr 15 2019
Product_{n>=1} (1 - (-1)^n/a(n)) = sin(3*Pi/10) (A019863). - Amiram Eldar, Nov 28 2024