cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001645 A Fielder sequence.

Original entry on oeis.org

1, 3, 7, 11, 26, 45, 85, 163, 304, 578, 1090, 2057, 3888, 7339, 13862, 26179, 49437, 93366, 176321, 332986, 628852, 1187596, 2242800, 4235569, 7998951, 15106172, 28528288, 53876211, 101746240, 192149690, 362878313, 685302531, 1294206745, 2444133829
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,3,7,11,26]; [n le 5 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001645:=-(1+2*z+3*z**2+5*z**4)/(-1+z+z**2+z**3+z**5); [Conjectured by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    LinearRecurrence[{1, 1, 1, 0, 1}, {1, 3, 7, 11, 26}, 50] (* T. D. Noe, Aug 09 2012 *)
    CoefficientList[Series[x*(1+2*x+3*x^2+5*x^4)/(1-x-x^2-x^3-x^5), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x+3*x^2+5*x^4)/(1-x-x^2-x^3-x^5)+x*O(x^n),n))
    

Formula

G.f.: x*(1+2*x+3*x^2+5*x^4)/(1-x-x^2-x^3-x^5).
a(n) = trace(M^n), where M = [0, 0, 0, 0, 1; 1, 0, 0, 0, 0; 0, 1, 0, 0, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1] is the 5 x 5 companion matrix to the monic polynomial x^5 - x^4 - x^3 - x^2 - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Jan 09 2023