A001650 k appears k times (k odd).
1, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
Offset: 1
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Stéphane Bessy, Anthony Bonato, Jeannette Janssen and Dieter Rautenbach, Bounds on the Burning Number, arXiv:1511.06023 [math.CO], 2015-2016.
- Abraham Isgur, Vitaly Kuznetsov, and Stephen Tanny, A combinatorial approach for solving certain nested recursions with non-slow solutions, arXiv preprint arXiv:1202.0276 [math.CO], 2012.
Programs
-
Haskell
a001650 n k = a001650_tabf !! (n-1) !! (k-1) a001650_row n = a001650_tabf !! (n-1) a001650_tabf = iterate (\xs@(x:_) -> map (+ 2) (x:x:xs)) [1] a001650_list = concat a001650_tabf -- Reinhard Zumkeller, Nov 14 2015
-
Mathematica
a[1]=1,a[2]=3,a[3]=3,a[n_]:=a[n]=a[n-a[n-2]]+2 (* Branko Curgus, May 07 2010 *) Flatten[Table[Table[n,{n}],{n,1,17,2}]] (* Harvey P. Dale, Mar 31 2013 *)
-
PARI
a(n)=if(n<1,0,1+2*sqrtint(n-1))
-
Python
from math import isqrt def A001650(n): return 1+(isqrt(n-1)<<1) # Chai Wah Wu, Nov 23 2024
Formula
a(n) = 1 + 2*floor(sqrt(n-1)), n > 0. - Antonio Esposito, Jan 21 2002
From Michael Somos, Apr 29 2003: (Start)
G.f.: theta_3(x)*x/(1-x).
a(n+1) = a(n) + A000122(n). (End)
a(1) = 1, a(2) = 3, a(3) = 3, a(n) = a(n-a(n-2))+2. - Branko Curgus, May 07 2010
a(n) = 2*ceiling(sqrt(n)) - 1. - Branko Curgus, May 07 2010
Seen as a triangle read by rows: T(n,k) = 2*(n-1), k=1..n. - Reinhard Zumkeller, Nov 14 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022
Extensions
More terms from Michael Somos, Apr 29 2003
Comments