A001658 Fibonomial coefficients.
1, 13, 273, 4641, 85085, 1514513, 27261234, 488605194, 8771626578, 157373300370, 2824135408458, 50675778059634, 909348684070099, 16317540120588343, 292806787575013635, 5254201798026392211, 94282845030238533383, 1691836875411111866723, 30358781826262552258596
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
- D. A. Lind, A Determinant Involving Binomial Coefficients, Part 1, Part 2, Fibonacci Quarterly 9.2, 1971.
- Index entries for linear recurrences with constant coefficients, signature (13, 104, -260, -260, 104, 13, -1).
Programs
-
Mathematica
f[n_] := Times @@ Fibonacci[Range[n+1, n+6]]/240; Table[f[n], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *) LinearRecurrence[{13,104,-260,-260,104,13,-1},{1,13,273,4641,85085,1514513,27261234},20] (* Harvey P. Dale, Aug 24 2014 *)
-
PARI
b(n,k)=prod(j=1,k,fibonacci(n+j)/fibonacci(j)); vector(20,n,b(n-1,6)) \\ Joerg Arndt, May 08 2016
Formula
From Wolfdieter Lang, Jul 13 2000: (Start)
G.f.: 1/(1-13*x-104*x^2+260*x^3+260*x^4-104*x^5-13*x^6+x^7) = 1/((1+x)*(1-3*x+x^2)*(1+7*x+x^2)*(1-18*x+x^2)) (see Comments to A055870).
a(n) = 5*a(n-1)+F(n-5)*Fibonomial(n+5, 5), n >= 1, a(0) = 1; F(n) = A000045(n) (Fibonacci). a(n) = 18*a(n-1)-a(n-2)+((-1)^n)*Fibonomial(n+4, 4), n >= 2; a(0) = 1, a(1) = 13; Fibonomial(n+4, 4) = A001656(n). (End)
From Gary Detlefs, Dec 03 2012: (Start)
a(n) = F(n+1)*F(n+2)*F(n+3)*F(n+4)*F(n+5)*F(n+6)/240.
a(n) = (F(n+5)^2 - F(n+4)^2)*(F(n+3)^4 - 1)/240, where F(n) = A000045(n). (End)
Conjecture: a(n) = F(7)^(n-6) + Sum_{i=3..n-5} F(i-2)F(6)^{i-1}F(7)^{n-i-5} + Sum_{j=3..i} F(i-2)F(j-2)F(5)^{j-1}F(6)^{i-j}F(7)^{n-i-5} + Sum_{k=3..j} F(i-2)F(j-2)F(k-2)F(4)^{k-1}F(5)^{j-k}F(6)^{i-j}F(7)^{n-i-5} + Sum_{l=3..k} F(i-2)F(j-2)F(k-2)F(l-2)F(3)^{l-1}F(4)^{k-l}F(5)^{j-k}F(6)^{i-j}F(7)^{n-i-5} + Sum_{m=3..l} F(i-2)F(j-2)F(k-2)F(l-2)F(m-2)F(m)F(3)^{l-m}F(4)^{k-l}F(5)^{j-k}F(6)^{i-j}F(7)^{n-i-5}, where F(n)=A000045(n). - Dale Gerdemann, May 08 2016
G.f.: exp( Sum_{k>=1} F(7*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025
Extensions
More terms from Wolfdieter Lang, Jul 13 2000
Comments