A001712 Generalized Stirling numbers.
1, 12, 119, 1175, 12154, 133938, 1580508, 19978308, 270074016, 3894932448, 59760168192, 972751628160, 16752851775360, 304473528961920, 5825460745532160, 117070467915075840, 2465958106403712000, 54336917746726272000, 1250216389189281024000
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Matt Davis, Quadrant Marked Mesh Patterns and the r-Stirling Numbers, arXiv preprint arXiv:1412.0345 [math.CO], 2014.
- Matt Davis, Quadrant Marked Mesh Patterns and the r-Stirling Numbers, J. Int. Seq. 18 (2015), #15.10.1.
- Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv preprint arXiv:1201.1323 [math.CO], 2012.
- Sergey Kitaev and Jeffrey Remmel, Quadrant Marked Mesh Patterns, J. Int. Seq. 15 (2012), #12.4.7.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are introduced.]
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49. [Annotated scanned copy]
Programs
-
Maple
A001712 := proc(n) add((-1)^(n+k)*binomial(k+2, 2)*3^k*Stirling1(n+2, k+2), k=0..n) ; end proc: seq(A001712(n), n=0..10) ; # R. J. Mathar, Jun 09 2018
-
Mathematica
nn = 22; t = Range[0, nn]! CoefficientList[Series[Log[1 - x]^2/(2*(1 - x)^3), {x, 0, nn}], x]; Drop[t, 2] (* T. D. Noe, Aug 09 2012 *)
-
PARI
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+2, 2)*3^k*stirling(n+2, k+2, 1)) \\ Michel Marcus, Jan 20 2016
-
PARI
b(n) = prod(r=0, n+1, r+3); c(n) = sum(i=0, n+1, sum(j=i+1, n+1, 1/((3+i)*(3+j)))); for(n=0, 18, print1(b(n)*c(n),",")) \\ Petros Hadjicostas, Jun 11 2020
Formula
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+2, 2)*3^k*Stirling1(n+2, k+2). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
E.g.f.: (1 - 7*log(1 - x) + 6*log(1 - x)^2)/(1 - x)^5. - Vladeta Jovovic, Mar 01 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k, i)*Product_{j=0..k-1} (-a-j), then a(n-2) = |f(n,2,3)|, for n >= 2. [Milan Janjic, Dec 21 2008]
Conjecture: a(n) + 3*(-n-3)*a(n-1) + (3*n^2 + 15*n + 19)*a(n-2) - (n+2)^3*a(n-3)=0. - R. J. Mathar, Jun 09 2018
From Petros Hadjicostas, Jun 11 2020: (Start)
a(n) = [x^2] Product_{r=0}^{n+1} (x + 3 + r) = (Product_{r=0}^{n+1} (r+3)) * Sum_{0 <= i < j <= n+1} 1/((3+i)*(3+j)).
Since a(n) = R_{n+2}^2(a=-3, b=-1) and A001711(n) = R_{n+1}^1(a=-3,b=-1), the equation R_{n+2}^2(a=-3,b=-1) = R_{n+1}^1(a=-3,b=-1) + (n+4)*R_{n+1}^2(a=-3,b=-1) implies the following:
(i) a(n) = A001711(n) + (n+4)*a(n-1) for n >= 1.
(ii) a(n) = (n+2)!/2 + (2*n+7)*a(n-1) - (n+3)^2*a(n-2) for n >= 2.
(iii) R. J. Mathar's recurrence above. (End)
Extensions
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
Comments