cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001717 Generalized Stirling numbers.

Original entry on oeis.org

1, 15, 179, 2070, 24574, 305956, 4028156, 56231712, 832391136, 13051234944, 216374987520, 3785626465920, 69751622298240, 1350747863435520, 27437426560500480, 583506719443584000, 12969079056388224000, 300749419818102528000, 7265204785551331584000
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=3,n=4) ~ exp(-x)/x^3*(1 - 15/x + 179/x^2 - 2070/x^3 + 24574/x^4 - 305956/x^5 + ...) leads to the sequence given above. See A163931 and A163932 for more information. - Johannes W. Meijer, Oct 20 2009
From Petros Hadjicostas, Jun 25 2020: (Start)
For nonnegative integers n, m and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and Mitrinovic and Mitrinovic (1962) using slightly different notation.
These numbers are defined via the g.f. Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0.
As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_0^0(a,b) = 1, R_1^0(a,b) = a, R_1^1(a,b) = 1, and R_n^m(a,b) = 0 for n < m.
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current sequence, a(n) = R_{n+2}^2(a=-4, b=-1) for n >= 0. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    nn = 20; t = Range[0, nn]! CoefficientList[Series[(1 - 9*Log[1 - x] + 10*Log[1 - x]^2)/(1 - x)^6, {x, 0, nn}], x] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+2, 2)*4^k*stirling(n+2, k+2, 1)); \\ Michel Marcus, Jan 20 2016

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(k+2, 2) * 4^k * Stirling1(n+2, k+2). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
E.g.f.: (1 - 9*log(1 - x) + 10*log(1 - x)^2)/(1 - x)^6. - Vladeta Jovovic, Mar 01 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k) * Stirling1(n-k,i) * Product_{j=0..k-1} (-a-j), then a(n-2) = |f(n,2,4)| for n>=2. - Milan Janjic, Dec 21 2008
From Petros Hadjicostas, Jun 26 2020: (Start)
a(n) = [x^2] Product_{r=0..n+1} (x + 4 + r) = (Product_{r=0..n+1} (4 + r)) * Sum_{0 <= i < j <= n+1} 1/((4 + i)*(4 + j)).
Since a(n) = R_{n+2}^2(a=-4, b=-1) and R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b), we conclude that:
(i) a(n) = A001716(n) + (n+5)*a(n-1) for n >= 1;
(ii) a(n) = (n+3)!/6 + (2*n+9)*a(n-1) - (n+4)^2*a(n-2) for n >= 2.
(iii) a(n) = 3*(n+4)*a(n-1) - (3*n^2+21*n+37)*a(n-2) + (n+3)^3*a(n-3) for n >= 3. (End)

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004