A001730 a(n) = n!/6!.
1, 7, 56, 504, 5040, 55440, 665280, 8648640, 121080960, 1816214400, 29059430400, 494010316800, 8892185702400, 168951528345600, 3379030566912000, 70959641905152000, 1561112121913344000, 35905578804006912000, 861733891296165888000, 21543347282404147200000
Offset: 6
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 6..300
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 266.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliƩs aux nombres de Stirling. II, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 107-108 1963 1-77.
- Index entries for sequences related to factorial numbers.
- Index to divisibility sequences.
Programs
-
Haskell
a001730 = (flip div 720) . a000142 -- Reinhard Zumkeller, Aug 31 2014
-
Magma
[Factorial(n)/720: n in [6..25]]; // Vincenzo Librandi, Jul 20 2011
-
Mathematica
a[n_]:=n!/6!; Array[a,4!,6] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2009 *)
-
PARI
a(n)=n!/720 \\ Charles R Greathouse IV, Jan 12 2012
Formula
a(n)= A051339(n-6, 0)*(-1)^n (first unsigned column of triangle).
E.g.f.: x^6/(6!*(1-x)). [corrected by Alois P. Heinz, Jul 09 2021]
a(n) = A173333(n,6). - Reinhard Zumkeller, Feb 19 2010
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+7)/(x*(k+7) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
a(n) = A245334(n,n-6) / 7. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=6} 1/a(n) = 720*e - 1956.
Sum_{n>=6} (-1)^n/a(n) = 720/e - 264. (End)
Comments