cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001756 a(n) = A059366(n,n-3) = A059366(n,3) for n >= 3, where the triangle A059366 arises from the expansion of a trigonometric integral.

Original entry on oeis.org

15, 60, 450, 4500, 55125, 793800, 13097700, 243243000, 5016886875, 113716102500, 2808787731750, 75071235739500, 2158298027510625, 66409170077250000, 2177272076104125000, 75769068248423550000, 2789248824895091934375, 108288483790044745687500
Offset: 3

Views

Author

Keywords

Comments

Previous name was: Expansion of an integral.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 166-167.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[3]==15,a[n]==a[n-1]n (2n-7)/(n-3)},a,{n,20}] (* Harvey P. Dale, Nov 08 2011 *)
    Join[{c = 15}, Table[c = c*n*(2*n - 7)/(n - 3), {n, 4, 20}]] (* T. D. Noe, Aug 10 2012 *)

Formula

a(n) = 5*A007531(n)*A001147(n-2)/(2*(2*n-5)). - Philippe Deléham, Jun 26 2006
a(3) = 15, a(n) = a(n-1)*n*(2*n-7)/(n-3). - Philippe Deléham, Sep 19 2006
From Petros Hadjicostas, May 12 2020: (Start)
a(n) = n! * Sum_{k=0..n-3} (-1)^k * 2^(2*k-n) * binomial(n-3, k) * binomial(2*n-2*k, n-3) * binomial(n-2*k+3, n-k) for n >= 3. [Special case of a formula by Comtet, but corrected]
a(n) = 20 * binomial(2*n-6, n-3) * n!/2^n for n >= 3. [Special case of a formula due to Reinhard Zumkeller]
a(n) = binomial(-1/2, 3) * binomial(-1/2, n-3) * (-1)^n * n! * 2^n for n >= 3. (End)
a(n) ~ sqrt(2)*(5/16)*(2*n/e)^n. - Peter Luschny, May 13 2020

Extensions

More terms from Philippe Deléham, Sep 19 2006
Corrected and extended by Harvey P. Dale, Nov 08 2011
New name by Petros Hadjicostas, May 12 2020