cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001779 Expansion of 1/((1+x)(1-x)^8).

Original entry on oeis.org

1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 7274, 12174, 19650, 30738, 46782, 69498, 101046, 144111, 201993, 278707, 379093, 508937, 675103, 885677, 1150123, 1479452, 1886404, 2385644, 2993972
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of positive terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 - z)^n. Also the convolution of A001769 and A000012; A001753 and A001477; A001752 and A000217; A002623 and A000292; A002620 and A000332; A004526 and A000389. - Sergio Falcon (sfalcon(AT)dma.ulpgc.es), Feb 13 2007

Crossrefs

Cf. A001769 (first differences), A169795 (binomial transf.)

Programs

  • Magma
    [1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
    
  • Maple
    A001779 := proc(n) 1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 ; end proc:
    seq(A001779(n),n=0..50) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    CoefficientList[Series[1/((1 + x) (1 - x)^8), {x, 0, 50}], x] (* G. C. Greubel, Nov 24 2017 *)
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,7,29,91,239,553,1163,2269,4166},30] (* Harvey P. Dale, Jan 21 2023 *)
  • PARI
    a(n)=(2*n+9)*(4*n^6+108*n^5+1138*n^4+5904*n^3+15628*n^2+19638*n + 8925)/80640 +(-1)^n/256 \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = (-1)^{7-n}*Sum_{i=0..n} ((-1)^(7-i)*binomial(7+i,i)). - Sergio Falcon, Feb 13 2007
a(n)+a(n+1) = A000580(n+8). - R. J. Mathar, Jan 06 2021