A001783 n-phi-torial, or phi-torial of n: Product k, 1 <= k <= n, k relatively prime to n.
1, 1, 2, 3, 24, 5, 720, 105, 2240, 189, 3628800, 385, 479001600, 19305, 896896, 2027025, 20922789888000, 85085, 6402373705728000, 8729721, 47297536000, 1249937325, 1124000727777607680000, 37182145, 41363226782215962624, 608142583125, 1524503639859200000
Offset: 1
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- J. B. Cosgrave and K. Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008)
- J. B. Cosgrave and K. Dilcher, The multiplicative orders of certain Gauss factorials, Intl. J. Number Theory 7 (1) (2011) 145-171.
- S. W. Golomb and William Small, Problem E1045, Amer. Math. Monthly, 60 (1953), 422.
- Muhammed H. Islam and Shahriar Manzoor, φ1 and phitorial are injections, for any positive integer N, where N > 1
- Laszlo Toth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7
- Eric Weisstein's World of Mathematics, Wilson's Theorem
Programs
-
Haskell
a001783 = product . a038566_row -- Reinhard Zumkeller, Mar 04 2012, Aug 26 2011
-
Maple
A001783 := proc(n) local i,t1; t1 := 1; for i from 1 to n do if gcd(i,n)=1 then t1 := t1*i; fi; od; t1; end; A001783 := proc(n) local i; mul(i,i=select(k->igcd(n,k)=1,[$1..n])) end; # Peter Luschny, Oct 30 2010
-
Mathematica
A001783[n_]:=Times@@Select[Range[n],CoprimeQ[n,#]&]; Array[A001783,20] (* Enrique Pérez Herrero, Jul 23 2011 *)
-
PARI
A001783(n)=prod(k=2,n-1,k^(gcd(k,n)==1)) \\ M. F. Hasler, Jul 23 2011
-
PARI
a(n)=my(f=factor(n),t=n^eulerphi(f)); fordiv(f,d, t*=(d!/d^d)^moebius(n/d)); t \\ Charles R Greathouse IV, Nov 05 2015
-
Sage
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) def A001783(n): return Gauss_factorial(n, n) [A001783(n) for n in (1..25)] # Peter Luschny, Oct 01 2012
Formula
a(n) = n^phi(n)*Product_{d|n} (d!/d^d)^mu(n/d); phi=A000010 is the Euler totient function and mu=A008683 the Moebius function (Tom M. Apostol, Introduction to Analytic Number Theory, New York 1984, p. 48). - Franz Vrabec, Jul 08 2005
a(n) = n!/A066570(n). - R. J. Mathar, Mar 10 2011
a(n) == (-1)^A211487(n) (mod n). - Vladimir Shevelev, May 13 2012
Extensions
More terms from James Sellers, Dec 23 1999
Comments