A001798 Coefficients of Legendre polynomials.
2, 28, 182, 4760, 31654, 428260, 2941470, 163761840, 1152562950, 16381761396, 117402623338, 3390322778024, 24634522766126, 360043025043380, 2644479279859438, 312191499849352032, 2312918756095439814, 34398444513178377492
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..830
- H. E. Salzer, Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials, Math. Comp., 3 (1948), 16-18.
Crossrefs
Cf. A001796.
Programs
-
Magma
B:=Binomial; A001798:= func< n | 14*B(n+2,3)*Numerator(B(4*n+2,2*n+1)/2^(4*n))/B(2*n+5,4) >; [A001798(n): n in [1..30]]; // G. C. Greubel, Apr 23 2025
-
Maple
a:=n->(14*n/((2*n+3)*(2*n+5)))*numer(binomial(4*n+2,2*n+1)/2^(4*n)); # Sean A. Irvine, Nov 28 2012
-
Mathematica
A001798[n_]:= With[{B=Binomial}, 14*B[n+2,3]*Numerator[B[4*n+2,2*n+1]/2^(4*n) ]/B[2*n+5,4]]; Table[A001798[n], {n,30}] (* G. C. Greubel, Apr 23 2025 *)
-
SageMath
b=binomial def A001798(n): return 14*b(n+2,3)*numerator(b(4*n+2,2*n+1)/2^(4*n) )//b(2*n+5,4) print([A001798(n) for n in range(1,31)]) # G. C. Greubel, Apr 23 2025
Formula
a(n) = (14*n/((2*n+3)*(2*n+5)))*numerator(binomial(4*n+2, 2*n+1)/2^(4*n)). - Sean A. Irvine, Nov 28 2012
Extensions
More terms from Sean A. Irvine, Nov 28 2012
Comments