cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001798 Coefficients of Legendre polynomials.

Original entry on oeis.org

2, 28, 182, 4760, 31654, 428260, 2941470, 163761840, 1152562950, 16381761396, 117402623338, 3390322778024, 24634522766126, 360043025043380, 2644479279859438, 312191499849352032, 2312918756095439814, 34398444513178377492
Offset: 1

Views

Author

Keywords

Comments

Coefficient of Legendre_3(x) when x^n is written in term of Legendre polynomials. - Sean A. Irvine, Nov 28 2012

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001796.

Programs

  • Magma
    B:=Binomial;
    A001798:= func< n | 14*B(n+2,3)*Numerator(B(4*n+2,2*n+1)/2^(4*n))/B(2*n+5,4) >;
    [A001798(n): n in [1..30]]; // G. C. Greubel, Apr 23 2025
    
  • Maple
    a:=n->(14*n/((2*n+3)*(2*n+5)))*numer(binomial(4*n+2,2*n+1)/2^(4*n)); # Sean A. Irvine, Nov 28 2012
  • Mathematica
    A001798[n_]:= With[{B=Binomial}, 14*B[n+2,3]*Numerator[B[4*n+2,2*n+1]/2^(4*n) ]/B[2*n+5,4]];
    Table[A001798[n], {n,30}] (* G. C. Greubel, Apr 23 2025 *)
  • SageMath
    b=binomial
    def A001798(n): return 14*b(n+2,3)*numerator(b(4*n+2,2*n+1)/2^(4*n) )//b(2*n+5,4)
    print([A001798(n) for n in range(1,31)]) # G. C. Greubel, Apr 23 2025

Formula

a(n) = (14*n/((2*n+3)*(2*n+5)))*numerator(binomial(4*n+2, 2*n+1)/2^(4*n)). - Sean A. Irvine, Nov 28 2012

Extensions

More terms from Sean A. Irvine, Nov 28 2012