cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A001796 Coefficients of Legendre polynomials.

Original entry on oeis.org

1, 3, 27, 143, 3315, 20349, 260015, 1710855, 92116035, 631165425, 8775943605, 61750730457, 1755702867191, 12587970424449, 181858466731095, 1322239639929719, 154702037871777123, 1137023085979691001, 16789716964765636633
Offset: 0

Views

Author

Keywords

Comments

Numerators in expansion of c(x)^(3/2), c(x) the g.f. of A000108. - Gerald McGarvey, Oct 07 2008
Coefficient of Legendre_1(x) when x^n is written in term of Legendre polynomials. - Michel Marcus, May 28 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A001796:= func< n | Numerator(3*(n+1)*Catalan(2*n+1)/(4^n*(2*n+3))) >;
    [A001796(n): n in [0..25]]; // G. C. Greubel, Apr 23 2025
    
  • Mathematica
    Table[Numerator[3*Binomial[2*n+1/2, n]/(2*n+3)], {n,0,30}] (* G. C. Greubel, Apr 23 2025 *)
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec(((1-sqrt(1-4*x))/(2*x))^(3/2))) \\ Michel Marcus, Feb 04 2022
    
  • PARI
    a(n)=numerator(3*binomial(2*n+1/2, n)/(2*n+3)) \\ Tani Akinari, Oct 31 2024
    
  • SageMath
    def A001796(n): return numerator(3*binomial(2*n+1/2, n)/(2*n+3))
    print([A001796(n) for n in range(31)]) # G. C. Greubel, Apr 23 2025

Formula

Numerators of g.f. ((1-sqrt(1-4*x))/(2*x))^(3/2). - Sean A. Irvine, Nov 27 2012
a(n) = numerator(3*binomial(2*n+1/2, n)/(2*n+3)). - Tani Akinari, Oct 31 2024

Extensions

More terms from Sean A. Irvine, Nov 27 2012
Showing 1-1 of 1 results.