A001801
Coefficients of Legendre polynomials.
Original entry on oeis.org
3, 15, 105, 315, 6930, 18018, 90090, 218790, 2078505, 4849845, 22309287, 50702925, 1825305300, 4071834900, 18032411700, 39671305740, 347123925225, 755505013725, 3273855059475, 7064634602025, 121511715154830, 260382246760350, 1112542327066950, 2370198870707850, 20146690401016725
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
- G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
-
A001801:= func< n | 3*Binomial(n+3,3)*Catalan(n+2)*2^(Valuation(Factorial(n+4),2)-n-4) >;
[A001801(n): n in [0..30]]; // G. C. Greubel, Apr 26 2025
-
A001801[n_]:= 3*2^(2*n+1)*Binomial[n+3/2, n]/2^DigitCount[n+4,2,1];
Table[A001801[n], {n,0,40}] (* G. C. Greubel, Apr 26 2025 *)
-
a(n)=if(n<0,0,polcoeff(pollegendre(n+4),n)*2^valuation((n\2*2+4)!,2))
-
def A001801(n): return 3*2^(n-3)*binomial(n+3/2,n)*2^valuation(factorial(n+4), 2)
print([A001801(n) for n in range(31)]) # G. C. Greubel, Apr 26 2025
A001800
Coefficients of Legendre polynomials.
Original entry on oeis.org
1, 3, 30, 70, 315, 693, 12012, 25740, 109395, 230945, 1939938, 4056234, 16900975, 35102025, 1163381400, 2404321560, 9917826435, 20419054425, 167890003050, 344616322050, 1412926920405, 2893136075115, 47342226683700, 96742811049300, 395033145117975
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
- G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eric Weisstein's World of Mathematics, Legendre Polynomial, eq. 28.
-
A001800:= func< n | (n+1)*(n+2)*Catalan(n+1)/2^(&+Intseq(n+2, 2)) >;
[A001800(n): n in [0..30]]; // G. C. Greubel, Apr 25 2025
-
wt:= proc(n) local m, r; m:=n; r:=0;
while m>0 do r:= r+irem(m, 2, 'm') od; r
end:
a:= n-> (n+1) *binomial(2*n+2, n+1)/2^wt(n+2):
seq(a(n), n=0..30); # Alois P. Heinz, May 29 2013
-
a[n_] := (n+1)*Binomial[2*n+2, n+1]/2^DigitCount[n+2, 2, 1]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 13 2014 *)
-
a(n)=if(n<0,0,-polcoeff(pollegendre(n+2),n)*2^valuation((n\2*2)!,2))
-
def A001800(n): return (n+1)*binomial(2*n+2,n+1)//2^sum((n+2).digits(2))
print([A001800(n) for n in range(31)]) # G. C. Greubel, Apr 25 2025
A001802
Coefficients of Legendre polynomials.
Original entry on oeis.org
5, 35, 1260, 4620, 30030, 90090, 1021020, 2771340, 14549535, 37182145, 1487285800, 3650610600, 17644617900, 42075627300, 396713057400, 925663800600, 4281195077775, 9821565178425, 178970743251300, 405039050516100, 1822675727322450, 4079321865912150
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
- G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
A001802:= func< n | Binomial(n+4,4)*Catalan(n+3)*2^(Valuation(Factorial(n+6),2)-n-4) >;
[A001802(n): n in [0..30]]; // G. C. Greubel, Apr 26 2025
-
A001802[n_]:= 5*4^(n+1)*Binomial[n+5/2,n]/2^DigitCount[n+6,2,1];
Table[A001802[n], {n,0,30}] (* G. C. Greubel, Apr 26 2025 *)
-
a(n)= - polcoeff(pollegendre(n+6), n)*2^valuation((n\2*2+6)!, 2) \\ Michel Marcus, May 29 2013
-
def A001802(n): return 5*2^(n-4)*binomial(n+5/2,n)*2^valuation(factorial(n+6), 2)
print([A001802(n) for n in range(31)]) # G. C. Greubel, Apr 26 2025
A001797
Coefficients of Legendre polynomials.
Original entry on oeis.org
2, 20, 110, 2600, 16150, 208012, 1376550, 74437200, 511755750, 7134913500, 50315410002, 1433226830360, 10292051290430, 148889972762300, 1083802983548950, 126935005433253024, 933787075442258310, 13799767368300523260
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
B:= Binomial;
A001797:= func< n | 20*B(n+1,2)*Numerator(B(4*n,2*n)/2^(4*n))/(3*B(2*n+3,3)) >;
[A001797(n): n in [1..30]]; // G. C. Greubel, Apr 23 2025
-
a:=n->(10*n/((2*n+1)*(2*n+3)))*numer(binomial(4*n,2*n)/2^(4*n)); # Sean A. Irvine, Nov 28 2012
-
A001797[n_]:= With[{B=Binomial}, 20*B[n+1,2]*Numerator[B[4*n,2*n]/2^(4*n)]/( 3*B[2*n+3,3])];
Table[A001797[n], {n,30}] (* G. C. Greubel, Apr 23 2025 *)
-
b=binomial
def A001797(n): return 20*b(n+1,2)*numerator(b(4*n,2*n)/2^(4*n))/(3*b(2*n+3,3))
print([A001797(n) for n in range(1,31)]) # G. C. Greubel, Apr 23 2025
A001798
Coefficients of Legendre polynomials.
Original entry on oeis.org
2, 28, 182, 4760, 31654, 428260, 2941470, 163761840, 1152562950, 16381761396, 117402623338, 3390322778024, 24634522766126, 360043025043380, 2644479279859438, 312191499849352032, 2312918756095439814, 34398444513178377492
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
B:=Binomial;
A001798:= func< n | 14*B(n+2,3)*Numerator(B(4*n+2,2*n+1)/2^(4*n))/B(2*n+5,4) >;
[A001798(n): n in [1..30]]; // G. C. Greubel, Apr 23 2025
-
a:=n->(14*n/((2*n+3)*(2*n+5)))*numer(binomial(4*n+2,2*n+1)/2^(4*n)); # Sean A. Irvine, Nov 28 2012
-
A001798[n_]:= With[{B=Binomial}, 14*B[n+2,3]*Numerator[B[4*n+2,2*n+1]/2^(4*n) ]/B[2*n+5,4]];
Table[A001798[n], {n,30}] (* G. C. Greubel, Apr 23 2025 *)
-
b=binomial
def A001798(n): return 14*b(n+2,3)*numerator(b(4*n+2,2*n+1)/2^(4*n) )//b(2*n+5,4)
print([A001798(n) for n in range(1,31)]) # G. C. Greubel, Apr 23 2025
A001799
Coefficients of Legendre polynomials.
Original entry on oeis.org
8, 72, 2160, 15504, 220248, 1564920, 89324640, 640807200, 9246847896, 67087213336, 1957095947664, 14342471475696, 211153052281080, 1560676296310488, 185256494416099008, 1379131680653181504, 20598677144877854232
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
B:=Binomial;
A001799:= func< n | 144*B(n+2, 4)*Numerator(B(4*n, 2*n)/2^(4*n))/(5*B(2*n+5, 5)) >;
[A001799(n): n in [2..30]]; // G. C. Greubel, Apr 24 2025
-
a:=n->(9*(2*n)*(2*n-2)/((2*n+1)*(2*n+3)*(2*n+5)))*numer(binomial(4*n,2*n)/2^(4*n)); # Sean A. Irvine, Nov 28 2012
-
A001799[n_]:= With[{B=Binomial}, 144*B[n+2,4]*Numerator[B[4*n,2*n]/2^(4*n)]/(5*B[2*n+ 5, 5])];
Table[A001799[n], {n,2,35}] (* G. C. Greubel, Apr 24 2025 *)
-
b=binomial
def A001799(n): return 144*b(n+2, 4)*numerator(b(4*n, 2*n)/2^(4*n))//(5*b(2*n+5, 5))
print([A001799(n) for n in range(2, 31)]) # G. C. Greubel, Apr 24 2025
Showing 1-6 of 6 results.
Comments