cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001812 Coefficients of Laguerre polynomials.

Original entry on oeis.org

1, 36, 882, 18816, 381024, 7620480, 153679680, 3161410560, 66784798080, 1454424491520, 32724551059200, 761589551923200, 18341615042150400, 457129482588979200, 11787410229615820800, 314330939456421888000, 8663746518767628288000, 246661959710796005376000
Offset: 5

Views

Author

Keywords

Examples

			G.f. = x^5 + 36*x^6 + 882*x^7 + 18816*x^8 + 381024*x^9 + 7620480*x^10 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [((Factorial(n)/Factorial(5))^2)/Factorial(n-5): n in [5..20]]; // G. C. Greubel, May 11 2018
  • Mathematica
    Table[((n!/5!)^2)/(n-5)!, {n, 5, 20}] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    for(n=5,20, print1(((n!/5!)^2)/(n-5)!, ", ")) \\ G. C. Greubel, May 11 2018
    
  • Sage
    [factorial(m) * binomial(m, 5) / 120 for m in range(5,23)] # Zerinvary Lajos, Jul 05 2008
    

Formula

a(n) = (-1)*A021009(n, 5), n >= 5.
a(n) = ((n!/5!)^2)/(n-5)!, n >= 5.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,5,-6), (n>=5). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=5} 1/a(n) = 375*(gamma - Ei(1)) + 150*e + 175/2, where e = A001113, gamma = A001620, and Ei(1) = A091725.
Sum_{n>=5} (-1)^(n+1)/a(n) = 5225*(gamma - Ei(-1)) - 3100/e - 18125/6, where Ei(-1) = -A099285. (End)