A001822 Expansion of Sum_{n>=0} x^(3n+2)/(1-x^(3n+2)).
0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 0, 3, 1, 2, 2, 1, 0, 2, 0, 4, 1, 2, 0, 3, 1, 2, 1, 2, 0, 3, 1, 2, 1, 1, 2, 4, 0, 2, 1, 3, 0, 2, 0, 3, 2, 2, 0, 3, 1, 4, 1, 2, 0, 2, 1, 2, 2, 2, 0, 5, 0, 2, 1, 2, 2, 2, 1, 4, 1, 2, 0, 3, 0, 2, 2, 3, 0, 3, 1, 4, 1, 2, 0, 4, 2
Offset: 1
References
- Bruce C. Berndt,"On a certain theta-function in a letter of Ramanujan from Fitzroy House", Ganita 43 (1992),33-43.
Links
- Nick Hobson, Table of n, a(n) for n = 1..10000
- P. G. Dirichlet, Recherches sur diverses applications de l'analyse infinitésimale à la théorie des nombres, J. Reine Angew. Math. 21 (1840), 1-12.
- Michael Gilleland, Some Self-Similar Integer Sequences.
- R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
Programs
-
Haskell
a001822 n = length [d | d <- [2,5..n], mod n d == 0] -- Reinhard Zumkeller, Nov 26 2011
-
Maple
A001822 := proc(n) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,3) = 2 then a := a+1 ; end if ; end do: a ; end proc: seq(A001822(n),n=1..100) ; # R. J. Mathar, Sep 25 2017
-
Mathematica
a[n_] := DivisorSum[n, Boole[Mod[#, 3] == 2]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
-
PARI
a(n)=if(n<1, 0, sumdiv(n,d, d%3==2))
Formula
Moebius transform is period 3 sequence [0, 1, 0, ...]. - Michael Somos, Sep 20 2005
G.f.: Sum_{k>0} x^(3k-1)/(1-x^(3k-1)) = Sum_{k>0} x^(2k)/(1-x^(3k)). - Michael Somos, Sep 20 2005
a(n) + A001817(n) + A000005(n/3) = A000005(n), where A000005(.)=0 if the argument is not an integer. - R. J. Mathar, Sep 25 2017
Sum_{k=1..n} a(k) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,3) - (1 - gamma)/3 = A256843 - (1 - A001620)/3 = -0.0677207... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
Comments