cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A002324 Number of divisors of n == 1 (mod 3) minus number of divisors of n == 2 (mod 3).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 2, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 2, 2, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant -3. See Formula section for the general expression. - N. J. A. Sloane, Mar 22 2022
Coefficients in expansion of Dirichlet series Product_p (1 - (Kronecker(m,p) + 1)*p^(-s) + Kronecker(m,p) * p^(-2s))^(-1) for m = -3.
(Number of points of norm n in hexagonal lattice) / 6, n>0.
The hexagonal lattice is the familiar 2-dimensional lattice (A_2) in which each point has 6 neighbors. This is sometimes called the triangular lattice.
The first occurrence of a(n) = 1, 2, 3, 4,... is at n= 1, 7, 49, 91, 2401, 637, ... as tabulated in A343771. - R. J. Mathar, Sep 21 2024

Examples

			G.f. = x + x^3 + x^4 + 2*x^7 + x^9 + x^12 + 2*x^13 + x^16 + 2*x^19 + 2*x^21 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 112, first display.
  • J. W. L. Glaisher, Table of the excess of the number of (3k+1)-divisors of a number over the number of (3k+2)-divisors, Messenger Math., 31 (1901), 64-72.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Haskell
    a002324 n = a001817 n - a001822 n  -- Reinhard Zumkeller, Nov 26 2011
    
  • Maple
    A002324 := proc(n)
        local a,pe,p,e;
        a :=1 ;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if p = 3 then
                ;
            elif modp(p,3) = 1 then
                a := a*(e+1) ;
            else
                a := a*(1+(-1)^e)/2 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A002324(n),n=1..100) ; # R. J. Mathar, Sep 21 2024
  • Mathematica
    dn12[n_]:=Module[{dn=Divisors[n]},Count[dn,?(Mod[#,3]==1&)]-Count[ dn,?(Mod[#,3]==2&)]]; dn12/@Range[120]  (* Harvey P. Dale, Apr 26 2011 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Aug 24 2014 *)
    Table[DirichletConvolve[DirichletCharacter[3,2,m],1,m,n],{n,1,30}] (* Steven Foster Clark, May 29 2019 *)
    f[3, p_] := 1; f[p_, e_] := If[Mod[p, 3] == 1, e+1, (1+(-1)^e)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / (1 + x^k + x^(2*k)), x * O(x^n)), n))}; \\ Michael Somos
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2)))};
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p==3, 1, if( p%3==1, e+1, !(e%2))))))}; \\ Michael Somos, May 20 2005
    
  • PARI
    {a(n) = if( n<1, 0, qfrep([2,1; 1,2], n, 1)[n] / 3)}; \\ Michael Somos, Jun 05 2005
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 / (1 - X) / (1 - kronecker(-3, p)*X))[n])}; \\ Michael Somos, Jun 05 2005
    
  • PARI
    my(B=bnfinit(x^2+x+1)); vector(100,n,#bnfisintnorm(B,n)) \\ Joerg Arndt, Jun 01 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A002324(n): return prod(e+1 if p%3==1 else int(not e&1) for p, e in factorint(n).items() if p != 3) # Chai Wah Wu, Nov 17 2022

Formula

From N. J. A. Sloane, Mar 22 2022 (Start):
The Dedekind zeta function DZ_K(s) for a quadratic field K of discriminant D is as follows.
Here m is defined by K = Q(sqrt(m)) (so m=D/4 if D is a multiple of 4, otherwise m=D).
DZ_K(s) is the product of three terms:
(a) Product_{odd primes p | D} 1/(1-1/p^s)
(b) Product_{odd primes p such that (D|p) = -1} 1/(1-1/p^(2s))
(c) Product_{odd primes p such that (D|p) = 1} 1/(1-1/p^s)^2
and if m is
0,1,2,3,4,5,6,7 mod 8, the prime 2 is to be included in term
-,c,a,a,-,b,a,a, respectively.
For Maple (and PARI) implementations, see link. (End)
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 3*v^2 + 4*w^2 - 2*u*w + w - v. - Michael Somos, Jul 20 2004
Has a nice Dirichlet series expansion, see PARI line.
G.f.: Sum_{k>0} x^k/(1+x^k+x^(2*k)). - Vladeta Jovovic, Dec 16 2002
a(3*n + 2) = 0, a(3*n) = a(n), a(3*n + 1) = A033687(n). - Michael Somos, Apr 04 2003
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u3)*(u3 - u6) - (u2 - u6)^2. - Michael Somos, May 20 2005
Multiplicative with a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1+(-1)^e)/2 if p == 2 (mod 3). - Michael Somos, May 20 2005
G.f.: Sum_{k>0} x^(3*k - 2) / (1 - x^(3*k - 2)) - x^(3*k - 1) / (1 - x^(3*k - 1)). - Michael Somos, Nov 02 2005
G.f.: Sum_{n >= 1} q^(n^2)(1-q)(1-q^2)...(1-q^(n-1))/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n))). - Jeremy Lovejoy, Jun 12 2009
a(n) = A001817(n) - A001822(n). - R. J. Mathar, Mar 31 2011
A004016(n) = 6*a(n) unless n=0.
Dirichlet g.f.: zeta(s)*L(chi_2(3),s), with chi_2(3) the nontrivial Dirichlet character modulo 3 (A102283). - Ralf Stephan, Mar 27 2015
From Andrey Zabolotskiy, May 07 2018: (Start)
a(n) = Sum_{ m: m^2|n } A000086(n/m^2).
a(A003136(m)) > 0, a(A034020(m)) = 0 for all m. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Oct 11 2022

Extensions

More terms from David Radcliffe
Somos D.g.f. replaced with correct version by Ralf Stephan, Mar 27 2015

A001817 G.f.: Sum_{n>0} x^n/(1-x^(3n)) = Sum_{n>=0} x^(3n+1)/(1-x^(3n+1)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 3, 2, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 2, 1, 3, 3, 3, 1, 4, 1, 1, 2, 4, 2, 2, 1, 3, 2, 2, 2, 4, 2, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 5, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 4, 3, 2, 2, 2, 3, 2, 3, 1, 5, 1, 2, 2, 4, 2
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of positive divisors of n of the form 3k+1. If r(n) denotes the number of representations of n by the quadratic form j^2+ij+i^2, then r(n)= 6 *(a(n)-A001822(n)). - Benoit Cloitre, Jun 24 2002

Examples

			x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + x^9 + ...
		

References

  • Bruce C. Berndt, On a certain theta-function in a letter of Ramanujan from Fitzroy House, Ganita 43 (1992), 33-43.

Crossrefs

Programs

  • Haskell
    a001817 n = length [d | d <- [1,4..n], mod n d == 0]
    -- Reinhard Zumkeller, Nov 26 2011
  • Maple
    A001817 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,3) = 1 then
                a := a+1 ;
            end if ;
        end do:
        a ;
    end proc:
    seq(A001817(n),n=1..100) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Mod[#, 3] == 1]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d%3==1))
    

Formula

Moebius transform is period 3 sequence [1, 0, 0, ...]. - Michael Somos, Sep 20 2005
G.f.: Sum_{k>0} x^(3k-2)/(1-x^(3k-2)) = Sum_{k>0} x^k/(1-x^(3k)). - Michael Somos, Sep 20 2005
Equals A051731 * [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...]. - Gary W. Adamson, Nov 06 2007
a(n) = (A035191(n) + A002324(n)) / 2. - Reinhard Zumkeller, Nov 26 2011
Sum_{k=1..n} a(k) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,3) - (1 - gamma)/3 = A256425 - (1 - A001620)/3 = 0.536879... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A078181 a(n) = Sum_{d|n, d == 1 (mod 3)} d.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 8, 5, 1, 11, 1, 5, 14, 8, 1, 21, 1, 1, 20, 15, 8, 23, 1, 5, 26, 14, 1, 40, 1, 11, 32, 21, 1, 35, 8, 5, 38, 20, 14, 55, 1, 8, 44, 27, 1, 47, 1, 21, 57, 36, 1, 70, 1, 1, 56, 40, 20, 59, 1, 15, 62, 32, 8, 85, 14, 23, 68, 39, 1, 88, 1, 5, 74, 38, 26, 100, 8, 14, 80, 71, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 21 2002

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 mod k} d: A000593 (k=2), this sequence (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8).

Programs

  • Maple
    A078181 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,3) =1 then
                a :=a+d ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, May 11 2016
  • Mathematica
    a[n_] := Plus @@ Select[Divisors[n], Mod[#, 3] == 1 &]; Array[a, 100] (* Giovanni Resta, May 11 2016 *)

Formula

G.f.: Sum_{n>=0} (3*n+1)*x^(3*n+1)/(1-x^(3*n+1)).
G.f.: -q*P'/P where P = Product_{n>=0} (1 - q^(3*n+1)). - Joerg Arndt, Aug 03 2011
Conjecture. If a(n)=n+1 then n==1 (mod 3). (Is this easy to settle? It has been verified for n=1,2,3,...,2000.) - John W. Layman, Apr 03 2006
The conjecture is false. The first and only counterexample below 10^8 is a(6800) = 6801 and 6800 == 2 (mod 3). - Lambert Herrgesell (zero815(AT)googlemail.com), May 06 2008
Equals A051731 * [1, 0, 0, 4, 0, 0, 7, 0, 0, 10, ...]. - Gary W. Adamson, Nov 06 2007
A272027(n/3) + a(n) + A078182(n) = A000203(n). - R. J. Mathar, May 25 2020
G.f.: Sum_{n >= 1} x^n*(1 + 2*x^(3*n))/(1 - x^(3*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 = 0.274155... (A353908). - Amiram Eldar, Nov 26 2023

A078182 a(n) = Sum_{d|n, d == 2 (mod 3)} d.

Original entry on oeis.org

0, 2, 0, 2, 5, 2, 0, 10, 0, 7, 11, 2, 0, 16, 5, 10, 17, 2, 0, 27, 0, 13, 23, 10, 5, 28, 0, 16, 29, 7, 0, 42, 11, 19, 40, 2, 0, 40, 0, 35, 41, 16, 0, 57, 5, 25, 47, 10, 0, 57, 17, 28, 53, 2, 16, 80, 0, 31, 59, 27, 0, 64, 0, 42, 70, 13, 0, 87, 23, 56, 71, 10, 0, 76, 5, 40, 88, 28, 0, 115
Offset: 1

Views

Author

Vladeta Jovovic, Nov 21 2002

Keywords

Crossrefs

Programs

  • Maple
    A078182 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,3) =2 then
                a :=a+d ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, May 11 2016
  • Mathematica
    a[n_] := Plus @@ Select[Divisors[n], Mod[#, 3] == 2 &]; Array[a, 100] (* Giovanni Resta, May 11 2016 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d%3) == 2)); \\ Michel Marcus, May 11 2016

Formula

G.f.: Sum_{n>=0} (3*n+2)*x^(3*n+2)/(1-x^(3*n+2)).
A078181(n) + a(n) + 3*A000203(n/3) = A000203(n), where A000203 is defined as zero for non-integer arguments. - R. J. Mathar, May 11 2016
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 = 0.274155... (A353908). - Amiram Eldar, Nov 26 2023

A035191 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 9.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 2, 4, 1, 4, 2, 3, 2, 4, 2, 5, 2, 2, 2, 6, 2, 4, 2, 4, 3, 4, 1, 6, 2, 4, 2, 6, 2, 4, 4, 3, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 5, 3, 6, 2, 6, 2, 2, 4, 8, 2, 4, 2, 6, 2, 4, 2, 7, 4, 4, 2, 6, 2, 8, 2, 4, 2, 4, 3, 6, 4, 4, 2, 10, 1
Offset: 1

Views

Author

Keywords

Comments

Number of divisors of n not congruent to 0 mod 3. - Vladeta Jovovic, Oct 26 2001
a(n) is the number of factors (over Q) of the polynomial x^(2n) + x^n + 1 . a(n) = d(3n) - d(n) where d() is the divisor function. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Equals Mobius transform of A011655. - Gary W. Adamson, Apr 24 2009

Crossrefs

Programs

  • Haskell
    a035191 n = a001817 n + a001822 n  -- Reinhard Zumkeller, Nov 26 2011
    
  • Magma
    [NumberOfDivisors(n)/Valuation(3*n, 3): n in [1..100]]; // Vincenzo Librandi, Jun 03 2019
  • Maple
    for n from 1 to 500 do a := ifactors(n):s := 1:for k from 1 to nops(a[2]) do p := a[2][k][1]:e := a[2][k][2]: if p=3 then b := 1:else b := e+1:fi:s := s*b:od:printf(`%d,`,s); od:
    # alternative
    A035191 := proc(n)
        A001817(n)+A001822(n) ;
    end proc:
    [seq(A035191(n),n=1..100)] ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[9, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
    f[3, e_] := 1; f[p_, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    my(m=9); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(9, d)); \\ Amiram Eldar, Nov 20 2023
    

Formula

Multiplicative with a(3^e)=1 and a(p^e)=e+1 for p<>3.
G.f.: Sum_{k>0} x^k*(1+x^k)/(1-x^(3*k)). - Vladeta Jovovic, Dec 16 2002
a(n) = A001817(n) + A001822(n). [Reinhard Zumkeller, Nov 26 2011]
a(n) = tau(3*n) - tau(n). - Ridouane Oudra, Sep 05 2020
From Amiram Eldar, Nov 27 2022: (Start)
Dirichlet g.f.: zeta(s)^2 * (1 - 1/3^s).
Sum_{k=1..n} a(k) ~ (2*n*log(n) + (4*gamma + log(3) - 2)*n)/3, where gamma is Euler's constant (A001620). (End)
a(n) = Sum_{d|n} Kronecker(9, d). - Amiram Eldar, Nov 20 2023
a(n) = A000005(A038502(n)). - Ridouane Oudra, Sep 30 2024

A363795 Number of divisors of n of the form 7*k + 2.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 3, 0, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 2, 1, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==2);

Formula

G.f.: Sum_{k>0} x^(2*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-5)/(1 - x^(7*k-5)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,7) - (1 - gamma)/7 = 0.188117..., gamma(2,7) = -(psi(2/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A359211 a(n) = tau(3*n-1)/2, where tau(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 4, 1, 2, 2, 3, 1, 2, 2, 5, 1, 2, 1, 3, 2, 3, 1, 4, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 1, 6, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 5, 1, 4, 2, 3, 1, 2, 1, 6, 2, 2, 2, 3, 2, 2, 2, 6, 1, 4, 1, 3, 1, 3, 3, 4, 1, 2, 1, 6, 1, 4, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 21 2022

Keywords

Comments

Also number of divisors of 3*n-1 of form 3*k+1 (or 3*k+2).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 3*n-1]/2; Array[a, 100] (* Amiram Eldar, Dec 21 2022 *)
  • PARI
    a(n) = numdiv(3*n-1)/2;
    
  • PARI
    a(n) = sumdiv(3*n-1, d, d%3==1);
    
  • PARI
    a(n) = sumdiv(3*n-1, d, d%3==2);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(3*k-1))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(3*k-2))))

Formula

G.f.: Sum_{k>0} x^k/(1 - x^(3*k-1)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(3*k-2)).
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 2*log(3))*n/3 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 26 2022

A293896 Number of proper divisors of n of the form 3k+2.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 4, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 1, 2, 0, 1, 2, 3, 0, 2, 0, 3, 0, 1, 0, 3, 1, 2, 0, 2, 1, 4, 0, 2, 0, 1, 1, 2, 1, 2, 0, 4, 0, 2, 0, 2, 2, 1, 1, 4, 0, 2, 0, 2, 0, 2, 1, 3, 0, 2, 1, 4, 0, 2, 0, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[Mod[#, 3] == 2, # != n] &], {n, 105}] (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    A293896(n) = sumdiv(n,d,(d
    				

Formula

a(n) = A001822(n) - [n == 2 (mod 3)].
G.f.: Sum_{k>=1} x^(6*k-2) / (1 - x^(3*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,3) - (2 - gamma)/3 = A256843 - (2 - A001620)/3 = -0.401054... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A359239 Number of divisors of 3*n-2 of form 3*k+2.

Original entry on oeis.org

0, 1, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 4, 0, 2, 0, 2, 2, 2, 0, 3, 0, 4, 0, 2, 0, 2, 2, 4, 0, 2, 0, 4, 0, 2, 0, 4, 2, 2, 1, 2, 0, 4, 0, 4, 0, 2, 2, 2, 0, 4, 0, 6, 0, 2, 0, 2, 2, 2, 0, 4, 2, 4, 0, 3, 0, 2, 2, 4, 0, 2, 0, 6, 0, 2, 0, 4, 2, 4, 0, 2, 0, 4, 2, 4, 0, 2, 2, 2
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Count[Divisors[3 n-2],?(IntegerQ[(#-2)/3]&)],{n,100}] (* _Harvey P. Dale, Apr 23 2023 *)
    a[n_] := DivisorSum[3*n-2, 1 &, Mod[#, 3] == 2 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(3*n-2, d, d%3==2);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(3*k-1)))))

Formula

a(n) = A001822(3*n-2).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(3*k-1)).

A326400 Expansion of Sum_{k>=1} k * x^(2*k) / (1 - x^(3*k)).

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 5, 0, 7, 1, 6, 0, 8, 3, 10, 1, 9, 0, 15, 0, 13, 1, 15, 5, 14, 0, 16, 1, 21, 0, 21, 3, 19, 8, 18, 0, 20, 0, 35, 1, 24, 0, 27, 9, 25, 1, 30, 0, 36, 3, 28, 1, 27, 16, 40, 0, 31, 1, 45, 0, 32, 0, 42, 14, 39, 0, 39, 3, 56, 1, 45, 0, 38, 15, 40, 8, 42, 0, 71
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[k x^(2 k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 80}]

Formula

a(n) = Sum_{d|n, n/d==2 (mod 3)} d.
G.f.: Sum_{k>0} x^(3*k-1) / (1 - x^(3*k-1))^2. - Seiichi Manyama, Jun 29 2023
Showing 1-10 of 19 results. Next