cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A319992 a(n) = Product_{d|n, dA019565(d)^[2 == d mod 3].

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 3, 1, 30, 1, 3, 1, 3, 10, 21, 1, 3, 1, 30, 1, 126, 1, 21, 10, 3, 1, 315, 1, 30, 1, 21, 42, 66, 10, 3, 1, 3, 1, 11550, 1, 315, 1, 126, 10, 990, 1, 21, 1, 30, 22, 693, 1, 3, 420, 2205, 1, 2310, 1, 1650, 1, 3, 1, 273, 10, 126, 1, 66, 330, 245700, 1, 21, 1, 3, 10, 585, 42, 693, 1, 11550, 1, 546, 1, 315, 220, 3, 770
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. also A293222.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319992(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };

Formula

a(n) = Product_{d|n, dA019565(d)^[2 == d mod 3].
a(n) = A293214(n) / (A319990(n)*A319991(n)).
For all n >= 1:
A007814(a(n)) = A320005(n).
A048675(a(n)) = A293898(n).
A195017(a(n)) = -A293896(n) mod 3.

A293895 Number of proper divisors of n of the form 3k+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 3, 1, 1, 1, 3, 2, 3, 1, 3, 1, 1, 1, 4, 2, 1, 1, 3, 1, 2, 2, 3, 2, 2, 1, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 2, 1, 5, 1, 1, 1, 4, 1, 2, 1, 3, 1, 2, 3, 3, 2, 1, 2, 3, 1, 3, 1, 4, 1, 2, 1, 4, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[Mod[#, 3] == 1, # != n] &], {n, 105}] (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    A293895(n) = sumdiv(n,d,(d
    				

Formula

a(n) = A001817(n) - [n == 1 (mod 3)].
G.f.: Sum_{k>=1} x^(6*k-4) / (1 - x^(3*k-2)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,3) - (2 - gamma)/3 = A256425 - (2 - A001620)/3 = 0.203545... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320005 Number of proper divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320005(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A319995(n) - [+5 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = -1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320001(n).
a(n) = A007814(A319992(n)).
G.f.: Sum_{k>=1} x^(12*k-2) / (1 - x^(6*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (2 - gamma)/6 = -0.387302..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A293898 Sum of proper divisors of n of the form 3k+2.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 2, 0, 7, 0, 2, 0, 2, 5, 10, 0, 2, 0, 7, 0, 13, 0, 10, 5, 2, 0, 16, 0, 7, 0, 10, 11, 19, 5, 2, 0, 2, 0, 35, 0, 16, 0, 13, 5, 25, 0, 10, 0, 7, 17, 28, 0, 2, 16, 24, 0, 31, 0, 27, 0, 2, 0, 42, 5, 13, 0, 19, 23, 56, 0, 10, 0, 2, 5, 40, 11, 28, 0, 35, 0, 43, 0, 16, 22, 2, 29, 65, 0, 7, 0, 25, 0, 49, 5, 42, 0, 16, 11, 77, 0, 19, 0, 36, 40
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, And[Mod[#, 3] == 2, # != n] &], {n, 105}] (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    A293898(n) = sumdiv(n,d,(d
    				

Formula

a(n) = A078182(n) - ([n == 2 (mod 3)]*n).
G.f.: Sum_{k>=1} (3*k-1) * x^(6*k-2) / (1 - x^(3*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 - 1/6 = 0.107489... . - Amiram Eldar, Nov 27 2023

A320015 Number of proper divisors of n that are either of the form 6*k+1 or 6*k + 5.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 1, 1, 3, 2, 2, 2, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 2, 4, 1, 1, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 2, 2, 3, 1, 1, 3, 2, 3, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && MemberQ[{1, 5}, Mod[#, 6]] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320015(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A320001(n) + A320005(n).
a(n) = A035218(n) - ch15(n), where ch15 is the characteristic function of numbers of the form +-1 mod 6, i.e., ch15(n) = A232991(n-1).
Sum_{k=1..n} a(k) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = 2*(gamma + log(12)/4 - 1)/3 = 0.132294..., and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A293899 Number of proper divisors of the form 3k+1 minus number of proper divisors of the form 3k+2.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, -1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 1, 1, 2, -1, 1, 0, 1, 1, 0, -1, 1, 1, 2, 1, 0, 1, 1, 0, -1, 1, 2, -1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 0, -1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 2, -1, 1, 0, -1, 1, 0, 3, 1, 2, -1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[Mod[#, 3] == 1, # != n] &] - DivisorSum[n, 1 &, And[Mod[#, 3] == 2, # != n] &], {n, 105}] (* Michael De Vlieger, Nov 08 2017 *)
    Table[Total[Which[Mod[#,3]==1,1,Mod[#,3]==2,-1,True,0]&/@Most[ Divisors[ n]]],{n,110}] (* Harvey P. Dale, Nov 26 2021 *)
  • PARI
    A293895(n) = sumdiv(n,d,(dA293896(n) = sumdiv(n,d,(dA293899(n) = (A293895(n) - A293896(n));

Formula

When n = 3k, a(n) = A002324(n), when n = 3k+1, a(n) = A002324(n) - 1, when n = 3k+2, a(n) = A002324(n) + 1.
a(n) = A002324(n) - A010872(n) (mod 3).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Nov 25 2023
Showing 1-6 of 6 results.