cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001842 Expansion of Sum_{n>=0} x^(4*n+3)/(1 - x^(4*n+3)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 1, 2, 0, 0, 2, 1, 1, 2, 1, 1, 1, 1, 0, 2, 0, 0, 2, 2, 1, 2, 0, 1, 2, 0, 1, 3, 0, 0, 2, 1, 0, 2, 2, 1, 1, 0, 0, 3, 1, 2, 2, 1, 0, 2, 0, 1, 2, 0, 1
Offset: 0

Views

Author

Keywords

Comments

Number of divisors of n of the form 4*k+3. - Reinhard Zumkeller, Apr 18 2006

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 244.

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(binomial(d,3) mod 2, d in divisors(n)), n=0..100); # Ridouane Oudra, Nov 19 2019
  • Mathematica
    Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 4] == 3 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *)
    a[n_] := DivisorSum[n, 1 &, Mod[#, 4] == 3 &]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    a(n) = if(n<1, 0, sumdiv(n, d, d%4 == 3)); \\ Amiram Eldar, Nov 25 2023

Formula

a(A072437(n)) = 0. - Benoit Cloitre, Apr 24 2003
a(n) = A001227(n) - A001826(n). - Reinhard Zumkeller, Apr 18 2006
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^(4*k)). - Ilya Gutkovskiy, Sep 11 2019
a(n) = Sum_{d|n} (binomial(d,3) mod 2). - Ridouane Oudra, Nov 19 2019
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,4) - (1 - gamma)/4 = A256846 - (1 - A001620)/4 = -0.180804... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023