cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A316709 Bisection of the odd-indexed Pell numbers A001853: part 2.

Original entry on oeis.org

5, 169, 5741, 195025, 6625109, 225058681, 7645370045, 259717522849, 8822750406821, 299713796309065, 10181446324101389, 345869461223138161, 11749380235262596085, 399133058537705128729, 13558774610046711780701, 460599203683050495415105, 15646814150613670132332869, 531531081917181734003902441, 18056409971033565286000350125
Offset: 0

Views

Author

Wolfdieter Lang, Jul 11 2018

Keywords

Comments

The other part of this bisection is given in A316708.

Crossrefs

Programs

  • PARI
    x='x+O('x^99); Vec((5-x)/(1-34*x+x^2)) \\ Altug Alkan, Jul 11 2018

Formula

a(n) = Pell(4*n+3) = A000129(4*n+3) = A001653(2*(n+1)), n >= 0.
a(n) = 34*a(n-1) - a(n-2), with a(-1) = and a(0) = 5.
a(n) = 5*S(n, 34) - S(n-1, 34), where the Chebyshev polynomial S(n, 34) = A029547(n), n >= 0, with S(-1, x) = 0.
G.f.: (5 - x)/(1- 34*x + x^2).

A034781 Triangle of number of rooted trees with n >= 2 nodes and height h >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 18, 13, 5, 1, 1, 14, 38, 36, 19, 6, 1, 1, 21, 76, 93, 61, 26, 7, 1, 1, 29, 147, 225, 180, 94, 34, 8, 1, 1, 41, 277, 528, 498, 308, 136, 43, 9, 1, 1, 55, 509, 1198, 1323, 941, 487, 188, 53, 10, 1
Offset: 2

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1  1;
  1  2  1;
  1  4  3  1;
  1  6  8  4  1;
  1 10 18 13  5  1;
  1 14 38 36 19  6 1;
thus there are 10 trees with 7 nodes and height 2.
		

Crossrefs

T(2n,n) = A245102(n), T(2n+1,n) = A245103(n).
Row sums give A000081.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
         add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    T:= (n, k)-> b((n-1)$2, k) -b((n-1)$2, k-1):
    seq(seq(T(n, k), k=1..n-1), n=2..16);  # Alois P. Heinz, Jul 31 2013
  • Mathematica
    Drop[Map[Select[#, # > 0 &] &,
       Transpose[
        Prepend[Table[
          f[n_] :=
           Nest[CoefficientList[
              Series[Product[1/(1 - x^i)^#[[i]], {i, 1, Length[#]}], {x,
                0, 10}], x] &, {1}, n]; f[m] - f[m - 1], {m, 2, 10}],
    Prepend[Table[1, {10}], 0]]]], 1] // Grid (* Geoffrey Critzer, Aug 01 2013 *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1 || k<1, 0, Sum[Binomial[b[i-1, i-1, k-1]+j-1, j]*b[n-i*j, i-1, k], {j, 0, n/i}]]]; T[n_, k_] := b[n-1, n-1, k]-b[n-1, n-1, k-1]; Table[T[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 11 2014, after Alois P. Heinz *)
  • Python
    def A034781(n, k): return A375467(n, k) - A375467(n, k - 1)
    for n in range(2, 10): print([A034781(n, k) for k in range(2, n + 1)])
    # Peter Luschny, Aug 30 2024

Formula

Reference gives recurrence.
T(n, k) = A375467(n, k) - A375467(n, k - 1). - Peter Luschny, Aug 30 2024

Extensions

More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 19 2003

A291336 Number F(n,h,t) of forests of t unlabeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 2, 1, 0, 4, 3, 1, 0, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 3, 2, 1, 0, 6, 8, 3, 1, 0, 8, 4, 1, 0, 4, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 4, 3, 2, 1, 0, 10, 15, 9, 3, 1, 0, 18, 13, 4, 1, 0, 13, 5, 1, 0, 5, 1, 0, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 22 2017

Keywords

Comments

Elements in rows h=0 give A023531.
Positive elements in rows h=1 give A008284.
Positive row sums per layer (and - with a different offset - positive elements in column t=1) give A034781.
Positive column sums per layer give A033185.

Examples

			n h\t: 0 1 2 3 4 5 : A034781 : A033185   : A000081
-----+-------------+---------+-----------+--------
0 0  : 1           :         :           : 1
-----+-------------+---------+-----------+--------
1 0  : 0 1         :       1 : .         :
1 1  : 0           :         : 1         : 1
-----+-------------+---------+-----------+--------
2 0  : 0 0 1       :       1 : . .       :
2 1  : 0 1         :       1 : .         :
2 2  : 0           :         : 1 1       : 2
-----+-------------+---------+-----------+--------
3 0  : 0 0 0 1     :       1 : . . .     :
3 1  : 0 1 1       :       2 : . .       :
3 2  : 0 1         :       1 : .         :
3 3  : 0           :         : 2 1 1     : 4
-----+-------------+---------+-----------+--------
4 0  : 0 0 0 0 1   :       1 : . . . .   :
4 1  : 0 1 2 1     :       4 : . . .     :
4 2  : 0 2 1       :       3 : . .       :
4 3  : 0 1         :       1 : .         :
4 4  : 0           :         : 4 3 1 1   : 9
-----+-------------+---------+-----------+--------
5 0  : 0 0 0 0 0 1 :       1 : . . . . . :
5 1  : 0 1 2 2 1   :       6 : . . . .   :
5 2  : 0 4 3 1     :       8 : . . .     :
5 3  : 0 3 1       :       4 : . .       :
5 4  : 0 1         :       1 : .         :
5 5  : 0           :         : 9 6 3 1 1 : 20
-----+-------------+---------+-----------+--------
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, h) option remember; expand(`if`(n=0 or h=0
           or i=1, x^(t*n), b(n, i-1, t, h)+add(x^(t*j)*binomial(
           b(i-1$2, 0, h-1)+j-1, j)*b(n-i*j, i-1, t, h), j=1..n/i)))
        end:
    g:= (n, h)-> b(n$2, 1, h)-`if`(h=0, 0, b(n$2, 1, h-1)):
    F:= (n, h, t)-> coeff(g(n, h), x, t):
    seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..9);
  • Mathematica
    b[n_, i_, t_, h_] := b[n, i, t, h] = Expand[If[n == 0 || h == 0
         || i == 1, x^(t*n), b[n, i-1, t, h] + Sum[x^(t*j)*Binomial[
         b[i-1, i-1, 0, h-1]+j-1, j]*b[n - i*j, i-1, t, h], {j, 1, n/i}]]];
    g[n_, h_] := b[n, n, 1, h] - If[h == 0, 0, b[n, n, 1, h-1]];
    F[n_, h_, t_] := Coefficient[g[n, h], x, t];
    Table[Table[Table[F[n, h, t], {t, 0, n-h}], {h, 0, n}], {n, 0, 9}] //
    Flatten (* Jean-François Alcover, Mar 10 2022, after Alois P. Heinz *)

Formula

Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000081(n+1).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A005197(n).
Sum_{h=0..n} Sum_{t=0..n-h} (h+1) * F(n,h,t) = A001853(n+1) for n>0.
Sum_{t=0..n-1} F(n,1,t) = A000065(n) = A000041(n) - 1.
F(n,1,1) = 1 for n>1.
F(n,0,0) = A000007(n).

A291559 Total height of all (unlabeled) rooted identity trees with n vertices.

Original entry on oeis.org

0, 0, 1, 2, 5, 10, 23, 52, 120, 275, 644, 1508, 3558, 8418, 20012, 47699, 114082, 273476, 657250, 1582817, 3819514, 9233059, 22356918, 54216429, 131663670, 320158789, 779461271, 1899830067, 4635492672, 11321595218, 27677333555, 67720658475, 165835173692
Offset: 0

Views

Author

Alois P. Heinz, Aug 26 2017

Keywords

Examples

			: a(5) = 10 = 4 + 3 + 3 : a(4) = 5 = 3 + 2 :
:                       :                  :
:    o    o      o      :    o    o        :
:    |    |     / \     :    |   / \       :
:    o    o    o   o    :    o  o   o      :
:    |   / \   |        :    |  |          :
:    o  o   o  o        :    o  o          :
:    |  |      |        :    |             :
:    o  o      o        :    o             :
:    |                  :                  :
:    o                  :                  :
:                       :                  :
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, h) option remember; expand(`if`(n=0 or h=0 or i=1,
          `if`(n<2, x^(t*n), 0), b(n, i-1, t, h)+add(x^(t*j)*binomial(
           b(i-1$2, 0, h-1), j)*b(n-i*j, i-1, t, h), j=1..n/i)))
        end:
    g:= (n, h)-> b(n$2, 1, h)-`if`(h=0, 0, b(n$2, 1, h-1)):
    F:= (n, h, t)-> coeff(g(n, h), x, t):
    a:= n-> add(add((h+1)*F(n-1, h, t), t=1..n-1-h), h=0..n-2):
    seq(a(n), n=0..37);
  • Mathematica
    b[n_, i_, t_, h_] := b[n, i, t, h] = Expand[If[n == 0 || h == 0 || i == 1,
       If[n < 2, x^(t*n), 0], b[n, i-1, t, h] + Sum[x^(t*j)*Binomial[
       b[i-1, i-1, 0, h-1], j]*b[n-i*j, i-1, t, h], {j, 1, n/i}]]];
    g[n_, h_] := b[n, n, 1, h] - If[h == 0, 0, b[n, n, 1, h-1]];
    F[n_, h_, t_] := Coefficient[g[n, h], x, t];
    a[n_] := Sum[Sum[(h+1)*F[n-1, h, t], {t, 1, n-1-h}], {h, 0, n-2}];
    Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{h=0..n-2} Sum_{t=1..n-1-h} (h+1) * A291529(n-1,h,t).
Showing 1-4 of 4 results.