A001874 Convolved Fibonacci numbers.
1, 6, 27, 98, 315, 924, 2534, 6588, 16407, 39430, 91959, 209034, 464723, 1013292, 2171850, 4584620, 9546570, 19635840, 39940460, 80421600, 160437690, 317354740, 622844730, 1213580820, 2348773525, 4517541378, 8638447293, 16428864606, 31086197469, 58539877020
Offset: 0
Examples
G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 924*x^5 + 2534*x^6 + ...
References
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Index entries for linear recurrences with constant coefficients, signature (6,-9,-10,30,6,-41,-6,30,10,-9,-6,-1).
Crossrefs
Cf. A049310.
Programs
-
Maple
a:= n-> (Matrix(12, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [6, -9, -10, 30, 6, -41, -6, 30, 10, -9, -6, -1][i], 0)))^n)[1, 1]: seq(a(n), n=0..31); # Alois P. Heinz, Aug 15 2008
-
Mathematica
nn = 30; t = CoefficientList[Series[1/(1 - x - x^2)^6, {x, 0, nn}], x] (* T. D. Noe, Aug 10 2012 *)
-
Sage
taylor( mul(x/(1-x-x^2)^2 for i in range(1,4)),x,0,27) # Zerinvary Lajos, Jun 01 2009
Formula
G.f.: ( 1 - x - x^2 )^(-6).
a(n) = F'''''(n+5, 1)/5!, i.e., 1/5! times the 5th derivative of the (n+5)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
Comments