cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A071675 Array read by antidiagonals of trinomial coefficients.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 3, 3, 1, 0, 0, 2, 6, 4, 1, 0, 0, 1, 7, 10, 5, 1, 0, 0, 0, 6, 16, 15, 6, 1, 0, 0, 0, 3, 19, 30, 21, 7, 1, 0, 0, 0, 1, 16, 45, 50, 28, 8, 1, 0, 0, 0, 0, 10, 51, 90, 77, 36, 9, 1, 0, 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1, 0, 0, 0, 0, 1, 30, 141, 266, 266
Offset: 0

Views

Author

Henry Bottomley, May 30 2002

Keywords

Comments

Read as a number triangle, this is the Riordan array (1, x(1+x+x^2)) with T(n,k) = Sum_{i=0..floor((n+k)/2)} C(k,2i+2k-n)*C(2i+2k-n,i). Rows start {1}, {0,1}, {0,1,1}, {0,1,2,1}, {0,0,3,3,1},... Row sums are then the trinomial numbers A000073(n+2). Diagonal sums are A013979. - Paul Barry, Feb 15 2005
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th antidiagonal of the array. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213742. For example, s_1(n)=binomial(n,1)=n is the first column of A213742 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213742 for n>1, etc. In particular (see comment in A213742) in cases k=4,5,6,7,8, s_k(n) is A005718(n+2), A005719(n), A005720(n), A001919(n), A064055(n+3), respectively. - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012

Examples

			Rows start
1, 0,  0,  0,  0,  0, ...;
1, 1,  1,  0,  0,  0,  0, ...;
1, 2,  3,  2,  1,  0,  0, ...;
1, 3,  6,  7,  6,  3,  1, 0, ...;
1, 4, 10, 16, 19, 16, 10, 4, 1, ...; etc.
		

Crossrefs

Visible version of A027907. Row sums are 3^n, i.e. A000244. Central diagonal is A002426. Cf. A071676 for a slight variation.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n - k - j, j]*Binomial[k, n - k - j], {j, 0,
    Floor[(n - k)/2]}]; Table[T[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) starting with T(0, 0)=1. See A027907 for more.
As a number triangle, T(n, k) = Sum_{i=0..floor((n-k)/2)} C(n-k-i, i) * C(k, n-k-i). - Paul Barry, Apr 26 2005

A213742 Triangle of numbers C^(3)(n,k) of combinations with repetitions from n different elements over k for each of them not more than three appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 31, 1, 5, 15, 35, 65, 101, 1, 6, 21, 56, 120, 216, 336, 1, 7, 28, 84, 203, 413, 728, 1128, 1, 8, 36, 120, 322, 728, 1428, 2472, 3823, 1, 9, 45, 165, 486, 1206, 2598, 4950, 8451, 13051, 1, 10
Offset: 0

Views

Author

Keywords

Comments

The left side of triangle consists of 1's, while the right side is formed by A005725. Further, T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A005718(n) for n>=2, T(n,5)=A005719(n) for n>=5, T(n,6)=A005720(n) for n>=6, T(n,7)=A001919(n) for n>=7, T(n,8)=A064055(n) for n>=5.

Examples

			Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....3
.3..|..1.....3.....6....10
.4..|..1.....4....10....20....31
.5..|..1.....5....15....35....65....101
.6..|..1.....6....21....56...120....216...336
.7..|..1.....7....28....84...203....413...728....1128
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[4] (* Peter J. C. Moses, Apr 16 2013 *)

Formula

C^(3)(n,k)=sum{r=0,...,floor(k/4)}(-1)^r*C(n,r)*C(n-4*r+k-1, n-1)

A278734 T(n,k)=Number of nXk 0..3 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly one mistake.

Original entry on oeis.org

0, 6, 6, 40, 152, 40, 155, 1947, 1947, 155, 456, 17352, 58904, 17352, 456, 1128, 121520, 1410818, 1410818, 121520, 1128, 2472, 712406, 28637916, 99992428, 28637916, 712406, 2472, 4950, 3633649, 506031118, 6410559865, 6410559865, 506031118
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2016

Keywords

Comments

Table starts
.....0.........6.............40.................155......................456
.....6.......152...........1947...............17352...................121520
....40......1947..........58904.............1410818.................28637916
...155.....17352........1410818............99992428...............6410559865
...456....121520.......28637916..........6410559865............1351385130108
..1128....712406......506031118........374757577056..........268284486351027
..2472...3633649.....7907770636......19983433877142........50067074390669892
..4950..16547278...110655824716.....971720519011047......8732216738504713198
..9240..68531079..1401584381570...43159978267689118...1415177080112634284232
.16302.261693631.16222274394016.1757375854436887414.212485358907612452321760

Examples

			Some solutions for n=3 k=4
..0..0..2..0. .0..0..3..1. .0..0..2..0. .1..0..2..1. .0..0..2..1
..1..1..1..0. .1..0..1..1. .1..0..1..0. .1..1..2..1. .1..0..1..2
..2..1..2..0. .1..1..3..0. .3..0..1..3. .2..3..0..1. .1..2..2..1
		

Crossrefs

Column 1 is A001919(n+1).

Formula

Empirical for column k:
k=1: [polynomial of degree 7]
k=2: [polynomial of degree 28]
k=3: [polynomial of degree 109]

A278435 T(n,k)=Number of nXk 0..3 arrays with rows and columns in lexicographic nondecreasing order but with exactly one mistake.

Original entry on oeis.org

0, 6, 6, 40, 100, 40, 155, 1609, 1609, 155, 456, 19624, 57760, 19624, 456, 1128, 178352, 2116789, 2116789, 178352, 1128, 2472, 1287838, 67971132, 223202074, 67971132, 1287838, 2472, 4950, 7795151, 1796061464, 23450120081, 23450120081, 1796061464
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2016

Keywords

Comments

Table starts
....0.......6.........40...........155..............456................1128
....6.....100.......1609.........19624...........178352.............1287838
...40....1609......57760.......2116789.........67971132..........1796061464
..155...19624....2116789.....223202074......23450120081.......2266913897519
..456..178352...67971132...23450120081....7817299555828....2573951428892959
.1128.1287838.1796061464.2266913897519.2573951428892959.2817080307689646420

Examples

			Some solutions for n=3 k=4
..0..0..0..3. .0..0..2..0. .0..0..2..2. .0..0..1..3. .0..0..0..1
..1..1..3..0. .0..1..0..0. .0..2..3..0. .1..3..2..1. .1..1..3..0
..0..3..3..0. .0..1..3..2. .0..3..2..1. .0..3..0..1. .0..2..2..2
		

Crossrefs

Column 1 is A001919(n+1).

Formula

Empirical for column k:
k=1: [polynomial of degree 7]
k=2: [polynomial of degree 31]
k=3: [polynomial of degree 127]

A064055 Ninth column of quadrinomial coefficients.

Original entry on oeis.org

3, 31, 155, 546, 1554, 3823, 8451, 17205, 32802, 59268, 102388, 170261, 273975, 428418, 653242, 973998, 1423461, 2043165, 2885169, 4014076, 5509328, 7467801, 10006725, 13266955, 17416620, 22655178, 29217906
Offset: 0

Views

Author

Wolfdieter Lang, Aug 29 2001

Keywords

Crossrefs

A001919 (eighth column).

Programs

  • Mathematica
    Table[3Binomial[n+3,3]+19Binomial[n+3,4]+30Binomial[n+3,5]+21 Binomial[n+3,6]+ 7 Binomial[n+3,7]+ Binomial[n+3,8],{n,0,30}] (* Harvey P. Dale, Apr 30 2022 *)

Formula

a(n)= A008287(n+3, 8)= binomial(n+3, 3)*(n^5+46*n^4+875*n^3+7118*n^2+23880*n+20160)/(8!/3!), n >= 0.
G.f.: (3+4*x-16*x^2+15*x^3-6*x^4+x^5 )/(1-x)^9, numerator polynomial is N4(8, x) from the array A063421.
a(n) = 3*C(n+3,3) + 19*C(n+3,4) + 30*C(n+3,5) + 21*C(n+3,6) + 7*C(n+3,7) + C(n+3,8) (see comment in A071675). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
Showing 1-5 of 5 results.