A001950 Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.
2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157
Offset: 1
Examples
From _Paul Weisenhorn_, Aug 18 2012 and Aug 21 2012: (Start) a(14) = floor(14*phi^2) = 36; a'(14) = floor(14*phi)=22; with r=9 and j=1: a(13+1) = 34 + 2 = 36; with r=8 and j=1: a'(13+1) = 21 + 1 = 22. k=6 and a(5)=13 < n <= a(6)=15 a(14) = 3*14 - 6 = 36; a'(14) = 2*14 - 6 = 22; a(15) = 3*15 - 6 = 39; a'(15) = 2*15 - 6 = 24. (End)
References
- Claude Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 324, Problem 2.
- Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
- Martin Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Jean-Paul Allouche and F. Michel Dekking, Generalized Beatty sequences and complementary triples, Moscow Journal of Combinatorics and Number Theory, Vol. 8, No. 4 (2019), pp. 325-341; arXiv preprint, arXiv:1809.03424 [math.NT], 2018-2019.
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 3.
- L. Carlitz, R. Scoville, and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
- I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.
- H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, unpublished.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date [Cached copy, with permission]
- Robbert Fokkink, The Pell Tower and Ostronometry, arXiv:2309.01644 [math.CO], 2023.
- Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014
- Aviezri S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, Vol. 89 (1982), pp. 353-361 (the case a=1).
- Aviezri S. Fraenkel, The Raleigh game, INTEGERS: Electronic Journal of Combinatorial Number Theory 7.2 (2007): A13, 10 pages. See Table 1.
- Aviezri S. Fraenkel, Ratwyt, December 28 2011.
- Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math., Vol. 24, No. 2 (2010), pp. 570-588. - _N. J. A. Sloane_, May 06 2011
- Martin Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, Vol. 118 (2011), pp. 497-507.
- Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, Vol. 18 (2015), Article #15.11.8.
- Martin Griffiths, A difference property amongst certain pairs of Beatty sequences, The Mathematical Gazette, Vol. 102, Issue 554 (2018), Article 102.36, pp. 348-350.
- Tomi Kärki, Anne Lacroix, and Michel Rigo, On the recognizability of self-generating sets, JIS, Vol. 13 (2010), Article #10.2.2.
- Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, Vol. 3 (2000), Article #00.2.8.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3.
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
- Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
- Clark Kimberling and Kenneth B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, Vol. 123, No. 2 (2016), pp. 267-273.
- Johan Kok, Integer sequences with conjectured relation with certain graph parameters of the family of linear Jaco graphs, arXiv:2507.16500 [math.CO], 2025. See pp. 5-6.
- Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (eds.), Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. [See A317208 for a link.]
- Urban Larsson and Nathan Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
- A. J. Macfarlane, On the fibbinary numbers and the Wythoffarray, arXiv:2405.18128 [math.CO], 2024. See page 2.
- D. J. Newman, Problem 5252, Amer. Math. Monthly, Vol. 72, No. 10 (1965), pp. 1144-1145.
- Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff's game, pages 377-410 in "Games of No Chance 3", MSRI Publications Volume 56, 2009.
- R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
- Michel Rigo, Invariant games and non-homogeneous Beatty sequences, Slides of a talk, Journée de Mathématiques Discrètes, 2015.
- Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol. 49, No. 2 (May 2011), pp. 151-154.
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
- Jeffrey Shallit, Sumsets of Wythoff Sequences, Fibonacci Representation, and Beyond, arXiv:2006.04177 [math.CO], 2020.
- Jeffrey Shallit, Frobenius Numbers and Automatic Sequences, arXiv:2103.10904 [math.NT], 2021.
- Jeffrey Shallit, The Hurt-Sada Array and Zeckendorf Representations, arXiv:2501.08823 [math.NT], 2025. See p. 6.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull., Vol. 19 (1976), pp. 473-482.
- X. Sun, Wythoff's sequence and N-Heap Wythoff's conjectures, Discr. Math., Vol. 300 (2005), pp. 180-195.
- J. C. Turner, The alpha and the omega of the Wythoff pairs, Fib. Q., Vol. 27 (1989), pp. 76-86.
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Eric Weisstein's World of Mathematics, Golden ratio.
- Eric Weisstein's World of Mathematics, Wythoff's Game.
- Eric Weisstein's World of Mathematics, Wythoff Array.
- Index entries for sequences related to Beatty sequences
Crossrefs
a(n) = greatest k such that s(k) = n, where s = A026242.
A002251 maps between A000201 and A001950, in that A002251(A000201(n)) = A001950(n), A002251(A001950(n)) = A000201(n).
First differences give (essentially) A076662.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Programs
-
Haskell
a001950 n = a000201 n + n -- Reinhard Zumkeller, Mar 10 2013
-
Magma
[Floor(n*((1+Sqrt(5))/2)^2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
-
Maple
A001950 := proc(n) floor(n*(3+sqrt(5))/2) ; end proc: seq(A001950(n),n=0..40) ; # R. J. Mathar, Jul 16 2024
-
Mathematica
Table[Floor[N[n*(1+Sqrt[5])^2/4]], {n, 1, 75}] Array[ Floor[ #*GoldenRatio^2] &, 60] (* Robert G. Wilson v, Apr 17 2010 *)
-
PARI
a(n)=floor(n*(sqrt(5)+3)/2)
-
PARI
A001950(n)=(sqrtint(n^2*5)+n*3)\2 \\ M. F. Hasler, Sep 17 2014
-
Python
from math import isqrt def A001950(n): return (n+isqrt(5*n**2)>>1)+n # Chai Wah Wu, Aug 10 2022
Formula
a(n) = n + floor(n*phi). In general, floor(n*phi^m) = Fibonacci(m-1)*n + floor(Fibonacci(m)*n*phi). - Benoit Cloitre, Mar 18 2003
a(n) = A003622(n) + 1. - Philippe Deléham, Apr 30 2004
If a'=A000201 is the ordered complement (in N) of {a(n)}, then a(Fib(r-2) + j) = Fib(r) + a(j) for 0 < j <= Fib(r-2), 3 < r; and a'(Fib(r-1) + j) = Fib(r) + a'(j) for 0 < j <= Fib(r-2), 2 < r. - Paul Weisenhorn, Aug 18 2012
With a(1)=2, a(2)=5, a'(1)=1, a'(2)=3 and 1 < k and a(k-1) < n <= a(k) one gets a(n)=3*n-k, a'(n)=2*n-k. - Paul Weisenhorn, Aug 21 2012
Extensions
Corrected by Michael Somos, Jun 07 2000
Comments