A001953 a(n) = floor((n + 1/2) * sqrt(2)).
0, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Programs
-
Magma
[Floor((2*n+1)/Sqrt(2)): n in [0..100]]; // G. C. Greubel, Nov 14 2019
-
Maple
seq( floor((2*n+1)/sqrt(2)), n=0..100); # G. C. Greubel, Nov 14 2019
-
Mathematica
Table[Floor[(n + 1/2) Sqrt[2]], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)
-
PARI
a(n)=floor((n+1/2)*sqrt(2))
-
PARI
a(n)={sqrtint(2*n*(n+1))} \\ Andrew Howroyd, Oct 24 2019
-
Sage
[floor((2*n+1)/sqrt(2)) for n in (0..100)] # G. C. Greubel, Nov 14 2019
Formula
From Ralf Steiner, Oct 23 2019: (Start)
a(n) = floor(2*sqrt(A000217(n))).
a(n) = A136119(n + 1) - 1.
a(n + 1) - a(n) is in {1,2}.
a(n + 3) - a(n) is in {4,5}. (End)
Extensions
More terms from Michael Somos, Apr 26 2000.
Comments