A001954 a(n) = floor((n+1/2)*(2+sqrt(2))); winning positions in the 2-Wythoff game.
1, 5, 8, 11, 15, 18, 22, 25, 29, 32, 35, 39, 42, 46, 49, 52, 56, 59, 63, 66, 69, 73, 76, 80, 83, 87, 90, 93, 97, 100, 104, 107, 110, 114, 117, 121, 124, 128, 131, 134, 138, 141, 145, 148, 151, 155, 158, 162, 165, 169, 172, 175, 179, 182, 186, 189, 192, 196, 199
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012; J. Int. Seq. 16 (2013) #13.1.8
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Programs
-
Magma
[Floor((2+Sqrt(2))*(2*n+1)/2): n in [0..70]]; // G. C. Greubel, Dec 20 2019
-
Maple
seq( floor((2+sqrt(2))*(2*n+1)/2), n=0..70); # G. C. Greubel, Dec 20 2019
-
Mathematica
Table[Floor[(n + 1/2) (2 + Sqrt[2])], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *) Complement[Range[300], Table[Floor[Sqrt[2*n*(n + 1)]], {n, 0, 300}]] (* Ralf Steiner, Oct 27 2019 *)
-
PARI
a(n)=floor((n+1/2)*(2+sqrt(2)))
-
Sage
[floor((2+sqrt(2))*(2*n+1)/2) for n in (0..70)] # G. C. Greubel, Dec 20 2019
Formula
a(n + 1) - a(n) is either 3 or 4. Note the comment regarding some intervals in the complement (A001953). - Ralf Steiner, Oct 27 2019
Extensions
More terms from Michael Somos, Apr 26 2000
New name from Hugo Pfoertner, Dec 27 2021
Comments