cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A088317 a(n) = 8*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 4.

Original entry on oeis.org

1, 4, 33, 268, 2177, 17684, 143649, 1166876, 9478657, 76996132, 625447713, 5080577836, 41270070401, 335241141044, 2723199198753, 22120834731068, 179689877047297, 1459639851109444, 11856808685922849, 96314109338492236, 782369683393860737, 6355271576489378132, 51624542295308885793
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else 8*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
    
  • Mathematica
    LinearRecurrence[{8,1},{1,4},30] (* or *) With[{c=Sqrt[17]},Simplify/@ Table[1/2 (c-4)((c+4)^n-(4-c)^n (33+8c)),{n,30}]] (* Harvey P. Dale, May 07 2012 *)
  • Maxima
    a[0]:1$ a[1]:4$ a[n]:=8*a[n-1]+a[n-2]$ A088317(n):=a[n]$
    makelist(A088317(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • SageMath
    A088317=BinaryRecurrenceSequence(8,1,1,4)
    [A088317(n) for n in range(31)] # G. C. Greubel, Dec 13 2022

Formula

a(n) = ( (4+sqrt(17))^n + (4-sqrt(17))^n )/2.
a(n) = A086594(n)/2.
Lim_{n -> oo} a(n+1)/a(n) = 4 + sqrt(17).
From Paul Barry, Nov 15 2003: (Start)
E.g.f.: exp(4*x)*cosh(sqrt(17)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*17^k*4^(n-2*k).
a(n) = (-i)^n * T(n, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)
a(n) = A041024(n-1), n>0. - R. J. Mathar, Sep 11 2008
G.f.: (1-4*x)/(1-8*x-x^2). - Philippe Deléham, Nov 16 2008 and Nov 20 2008
a(n) = (1/2)*((33+8*sqrt(17))*(4-sqrt(17))^(n+2) + (33-8*sqrt(17))*(4+sqrt(17))^(n+2)). - Harvey P. Dale, May 07 2012

A383281 a(n) = Sum_{k=0..n} (2*k+1) * (1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2.

Original entry on oeis.org

1, 2, 11, 120, 2202, 61260, 2407770, 127116360, 8680455000, 744631438320, 78393873940200, 9938444069030400, 1493483322288157200, 262511581007832156000, 53360641241377862792400, 12420661873849173800856000, 3282370875452495120806512000, 977378127650967704776130016000
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2025

Keywords

Crossrefs

Cf. A002018.

Programs

  • PARI
    a(n) = sum(k=0, n, (2*k+1)*(2*k)!*(n-k)!*binomial(n, k)^2/2^(n+k));

Formula

a(n) = (n!)^2 * Sum_{k=0..n} (-1)^k * (1/2)^(n-k) * binomial(-3/2,k)/(n-k)!.
a(n) = (n!)^2 * [x^n] 1/(1-x)^(3/2) * exp(x/2).
a(n) = n * ( (n+1)*a(n-1) - (n-1)^2/2 * a(n-2) ) for n > 1.
a(n) = A002018(n+1)/(n+1).
a(n) ~ 4 * sqrt(Pi) * n^(2*n + 3/2) / exp(2*n - 1/2). - Vaclav Kotesovec, Apr 24 2025
Showing 1-2 of 2 results.