cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A086594 a(n) = 8*a(n-1) + a(n-2), starting with a(0)=2 and a(1)=8.

Original entry on oeis.org

2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, 153992264, 1250895426, 10161155672, 82540140802, 670482282088, 5446398397506, 44241669462136, 359379754094594, 2919279702218888, 23713617371845698, 192628218676984472, 1564739366787721474
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 11 2003

Keywords

Comments

a(n+1)/a(n) converges to 4 + sqrt(17).

Examples

			a(4) = 8*a(3)+a(2) = 8*536+66 = 4354.
		

Crossrefs

Cf. A003285.

Programs

  • Magma
    I:=[2,8]; [n le 2 select I[n] else 8*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
    
  • Mathematica
    LinearRecurrence[{8,1},{2,8},30] (* Harvey P. Dale, Sep 21 2014 *)
    RecurrenceTable[{a[0] == 2, a[1] == 8, a[n] == 8 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)
  • PARI
    x='x+O('x^30); Vec(2*(1-4*x)/(1-8*x-x^2)) \\ G. C. Greubel, Nov 07 2018

Formula

a(n) = (4+sqrt(17))^n + (4-sqrt(17))^n.
O.g.f: 2*(-1+4*x)/(-1+8*x+x^2). - R. J. Mathar, Dec 02 2007
a(n) = 2*A088317(n). - R. J. Mathar, Sep 27 2014

A099370 Chebyshev polynomial of the first kind, T(n,x), evaluated at x=33.

Original entry on oeis.org

1, 33, 2177, 143649, 9478657, 625447713, 41270070401, 2723199198753, 179689877047297, 11856808685922849, 782369683393860737, 51624542295308885793, 3406437421806992601601, 224773245296966202819873
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

Used in A099369.
Solutions of the Pell equation x^2 - 17y^2 = 1 (x values). After initial term this sequence bisects A041024. See 8*A097316(n-1) with A097316(-1) = 0 for corresponding y values. a(n+1)/a(n) apparently converges to (4+sqrt(17))^2. (See related comments in A088317, which this sequence also bisects.). - Rick L. Shepherd, Jul 31 2006
From a(n) = T(n, 33) (see the formula section) and the de Moivre-Binet formula for T(n,x=33) follows a(n+1)/a(n) = 33 + 8*sqrt(17), which is the conjectured value (4+sqrt(17))^2 given in the previous comment by Rick L. Shepherd. - Wolfdieter Lang, Jun 28 2013
Also numbers k such that 17*(k-1)*(k+1) is a square. - Bruno Berselli, May 31 2025

Examples

			a(1)^2 - 17*A121470(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1.
		

Crossrefs

Row 4 of array A188645.

Programs

  • Mathematica
    LinearRecurrence[{66, -1},{1, 33},14] (* Ray Chandler, Aug 11 2015 *)
  • PARI
    \\ Program uses fact that continued fraction for sqrt(17) = [4,8,8,...].
    print1("1, "); forstep(n=2,40,2,v=vector(n,i,if(i>1,8,4)); print1(contfracpnqn(v)[1,1],", ")) \\ Rick L. Shepherd, Jul 31 2006
    
  • PARI
    vector(20,n,polchebyshev(n-1,1,33)) \\ Joerg Arndt, Jan 01 2021

Formula

a(n) = 66*a(n-1) - a(n-2), a(-1):= 33, a(0)=1.
a(n) = T(n, 33) = (S(n, 66)-S(n-2, 66))/2 = S(n, 66)-33*S(n-1, 66) with T(n, x), resp. S(n, x), Chebyshev polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 66) = A097316(n).
a(n) = ((33+8*sqrt(17))^n + (33-8*sqrt(17))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*33)^(n-2*k), for n>=1, a(0)=1.
G.f.: (1-33*x)/(1-66*x+x^2).

Extensions

A-number for y values in Pell equation corrected by Wolfdieter Lang, Jun 28 2013

A089926 a(n) = 12*a(n-1) + a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 73, 882, 10657, 128766, 1555849, 18798954, 227143297, 2744518518, 33161365513, 400680904674, 4841332221601, 58496667563886, 706801342988233, 8540112783422682, 103188154744060417, 1246797969712147686
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Comments

The family of recurrences a(n) = 2*k*a(n-1) + a(n-2), a(0)=1, a(1)=k has solution a(n) = ((k+sqrt(k^2+1))^n + (k-sqrt(k^2+1))^n)/2; a(n) = Sum_{j=0..floor(n/2)} C(n,2k)*(k^2+1)^jk^(n-2j); a(n) = T(n,ki)*(-i)^n; e.g.f. exp(kx)*cosh(sqrt(k^2+1)*x).

Crossrefs

Essentially the same as A041060.

Formula

E.g.f.: exp(6x)*cosh(sqrt(37)x);
a(n) = ((6+sqrt(37))^n + (6-sqrt(37))^n)/2;
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*37^k*6^(n-2k).
a(n) = T(n, 6i)*(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = -1.
G.f.: (1-6x)/(1-12*x-x^2). - Philippe Deléham, Nov 21 2008
Showing 1-3 of 3 results.