cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002028 Number of connected graphs on n labeled nodes, each node being colored with one of 3 colors, such that no edge joins nodes of the same color.

Original entry on oeis.org

1, 3, 6, 42, 618, 15990, 668526, 43558242, 4373213298, 677307561630, 162826875512646, 61183069270120842, 36134310487980825258, 33673533885068169649830, 49646105434209446798290206, 116002075479856331220877149042, 430053223599741677879550609246498, 2531493110297317758855120762121050990
Offset: 0

Views

Author

Keywords

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A322279.

Programs

  • Mathematica
    f[{k_, r_, m_}]:= Binomial[m+r+k, k] Binomial[m+r, r] 2^(k r +k m + r m);
      a = Sum[Total[Map[f, Compositions[n, 3]]] x^n/n!, {n, 0, 20}];
      Range[0, 20]! CoefficientList[Series[Log[a]+1, {x, 0, 20}], x] (* Geoffrey Critzer, Jun 02 2011 *)
  • PARI
    seq(n)={Vec(serlaplace(1 + log(serconvol(sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n), (sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^3))))} \\ Andrew Howroyd, Dec 03 2018

Formula

E.g.f.: log(A(x))+1 where A(x) is the e.g.f. for A191371. - Geoffrey Critzer, Jun 02 2011
a(n) = m_n(3) using the functions defined in A002032. - Sean A. Irvine, May 29 2013
Logarithmic transform of A191371. - Andrew Howroyd, Dec 03 2018