A322279 Array read by antidiagonals: T(n,k) is the number of connected graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 6, 0, 0, 1, 5, 12, 42, 38, 0, 0, 1, 6, 20, 132, 618, 390, 0, 0, 1, 7, 30, 300, 3156, 15990, 6062, 0, 0, 1, 8, 42, 570, 9980, 136980, 668526, 134526, 0, 0, 1, 9, 56, 966, 24330, 616260, 10015092, 43558242, 4172198, 0, 0
Offset: 0
Examples
Array begins: =============================================================== n\k| 0 1 2 3 4 5 6 ---+----------------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 0 1 2 3 4 5 6 ... 2 | 0 0 2 6 12 20 30 ... 3 | 0 0 6 42 132 300 570 ... 4 | 0 0 38 618 3156 9980 24330 ... 5 | 0 0 390 15990 136980 616260 1956810 ... 6 | 0 0 6062 668526 10015092 65814020 277164210 ... 7 | 0 0 134526 43558242 1199364852 11878194300 67774951650 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- R. C. Read, E. M. Wright, Colored graphs: A correction and extension, Canad. J. Math. 22 1970 594-596.
Crossrefs
Programs
-
PARI
M(n)={ my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n)); my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n)); my(W=Mat(vector(n, k, Col(serlaplace(1 + log(serconvol(q, p^k))))))); matconcat([1, W]); } my(T=M(7)); for(n=1, #T, print(T[n,]))
Comments