cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322279 Array read by antidiagonals: T(n,k) is the number of connected graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 6, 0, 0, 1, 5, 12, 42, 38, 0, 0, 1, 6, 20, 132, 618, 390, 0, 0, 1, 7, 30, 300, 3156, 15990, 6062, 0, 0, 1, 8, 42, 570, 9980, 136980, 668526, 134526, 0, 0, 1, 9, 56, 966, 24330, 616260, 10015092, 43558242, 4172198, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Dec 01 2018

Keywords

Comments

Not all colors need to be used.

Examples

			Array begins:
===============================================================
n\k| 0 1      2        3          4           5           6
---+-----------------------------------------------------------
0  | 1 1      1        1          1           1           1 ...
1  | 0 1      2        3          4           5           6 ...
2  | 0 0      2        6         12          20          30 ...
3  | 0 0      6       42        132         300         570 ...
4  | 0 0     38      618       3156        9980       24330 ...
5  | 0 0    390    15990     136980      616260     1956810 ...
6  | 0 0   6062   668526   10015092    65814020   277164210 ...
7  | 0 0 134526 43558242 1199364852 11878194300 67774951650 ...
...
		

Crossrefs

Columns k=2..5 are A002027, A002028, A002029, A002030.

Programs

  • PARI
    M(n)={
      my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
      my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
      my(W=Mat(vector(n, k, Col(serlaplace(1 + log(serconvol(q, p^k)))))));
      matconcat([1, W]);
    }
    my(T=M(7)); for(n=1, #T, print(T[n,]))

Formula

k-th column is the logarithmic transform of the k-th column of A322280.
E.g.f of k-th column: 1 + log(Sum_{n>=0} A322280(n,k)*x^n/n!).

A002032 Number of n-colored connected graphs on n labeled nodes.

Original entry on oeis.org

1, 1, 2, 24, 912, 87360, 19226880, 9405930240, 10142439229440, 24057598104207360, 125180857812868300800, 1422700916050060841779200, 35136968950395142864227532800, 1876028272361273394915958613606400, 215474119792145796020405035320528076800
Offset: 0

Views

Author

Keywords

Comments

Every connected graph on n nodes can be colored with n colors in exactly n! ways, so this sequence is just n! * A001187(n). - Andrew Howroyd, Dec 03 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* b = A001187 *) b[n_] := b[n] = If[n == 0, 1, 2^(n(n-1)/2) - Sum[k* Binomial[n, k]*2^((n-k)(n-k-1)/2)*b[k], {k, 1, n-1}]/n];
    a[n_] := n! b[n];
    Array[a, 14] (* Jean-François Alcover, Aug 16 2019, using Alois P. Heinz's code for A001187 *)
  • PARI
    seq(n) = {Vec(serlaplace(serlaplace(1 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n))))))} \\ Andrew Howroyd, Dec 03 2018

Formula

a(n) = n!*A001187(n). - Andrew Howroyd, Dec 03 2018
Define M_0(k)=1, M_n(0)=0, M_n(k) = Sum_{r=0..n} C(n,r)*2^(r*(n-r))*M_r(k-1) [M_n(k) = A322280(n,k)], m_n(k) = M_n(k) -Sum_{r=1..n-1} C(n-1,r-1)*m_r(k)*M_{n-r}(k) [m_n(k) = A322279(n,k)], f_n(k) = Sum_{r=1..k} (-1)^(k-r)*C(k,r)*m_n(r). This sequence gives a(n) = f_n(n). - Sean A. Irvine, May 29 2013, edited Andrew Howroyd, Dec 03 2018
The above formula is referenced by sequences A002027-A002030, A002031. - Andrew Howroyd, Dec 03 2018

Extensions

More terms from Sean A. Irvine, May 29 2013
Name clarified by Andrew Howroyd, Dec 03 2018
a(0)=1 prepended by Andrew Howroyd, Jan 05 2024
Showing 1-2 of 2 results.