cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002068 Wilson remainders: a(n) = ((p-1)!+1)/p mod p, where p = prime(n).

Original entry on oeis.org

1, 1, 0, 5, 1, 0, 5, 2, 8, 18, 19, 7, 16, 13, 6, 34, 27, 56, 12, 69, 11, 73, 20, 70, 70, 72, 57, 1, 30, 95, 71, 119, 56, 67, 94, 86, 151, 108, 21, 106, 48, 72, 159, 35, 147, 118, 173, 180, 113, 131, 169, 107, 196, 214, 177, 73, 121, 170, 25, 277, 164, 231, 271, 259, 288, 110
Offset: 1

Views

Author

Keywords

Comments

If this is zero, p is a Wilson prime (see A007540).
Costa, Gerbicz, & Harvey give an efficient algorithm for computing terms of this sequence. - Charles R Greathouse IV, Nov 09 2012

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 29.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 244.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:= p -> ((p-1)!+1 mod p^2)/p;
    seq(f(ithprime(i)),i=1..1000); # Robert Israel, Jun 15 2014
  • Mathematica
    Table[p=Prime[n]; Mod[((p-1)!+1)/p, p], {n,100}] (* T. D. Noe, Mar 21 2006 *)
    Mod[((#-1)!+1)/#,#]&/@Prime[Range[70]] (* Harvey P. Dale, Feb 21 2020 *)
  • PARI
    forprime(n=2, 10^2, m=(((n-1)!+1)/n)%n; print1(m, ", ")) \\ Felix Fröhlich, Jun 14 2014

Formula

a(n) = A007619(n) mod A000040(n).
a(n) + A197631(n) = A275741(n) for n > 1. - Jonathan Sondow, Jul 08 2019
a(n) = ( A027641(p-1)/A027642(p-1) + 1/p - 1 ) mod p, where p = prime(n), proved by Glashier (1900). - Max Alekseyev, Jun 20 2020