cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002095 Number of partitions of n into nonprime parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 8, 8, 12, 13, 17, 19, 26, 28, 37, 40, 52, 58, 73, 79, 102, 113, 139, 154, 191, 210, 258, 284, 345, 384, 462, 509, 614, 679, 805, 893, 1060, 1171, 1382, 1528, 1792, 1988, 2319, 2560, 2986, 3304, 3823, 4231, 4888, 5399, 6219, 6870
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A023895. - Emeric Deutsch, Apr 19 2006
Column k=0 of A222656. - Alois P. Heinz, May 29 2013

Examples

			a(6) = 3 from the partitions 6 = 1+1+1+1+1+1 = 4+1+1.
		

References

  • L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
  • A. Murthy, Some new Smarandache sequences, functions and partitions, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000 (but beware errors).
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 2.6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002095 = p a018252_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 15 2012
    
  • Maple
    g:=product((1-x^ithprime(j))/(1-x^j),j=1..60): gser:=series(g,x=0,60): seq(coeff(gser,x,n),n=0..55); # Emeric Deutsch, Apr 19 2006
  • Mathematica
    NonPrime[n_Integer] := FixedPoint[n + PrimePi[ # ] &, n + PrimePi[n]]; CoefficientList[ Series[1/Product[1 - x^NonPrime[i], {i, 1, 50}], {x, 0, 50}], x]
  • PARI
    first(n)=my(x='x+O('x^(n+1)),pr=1); forprime(p=2,n+1, pr *= (1-x^p)); pr/prod(i=1,n+1, 1-x^i) \\ Charles R Greathouse IV, Jun 23 2017

Formula

G.f.: Product_{i>0} (1-x^prime(i))/(1-x^i). - Vladeta Jovovic, Jul 31 2004

Extensions

More terms from James Sellers, Dec 23 1999
Corrected by Robert G. Wilson v, Feb 11 2002