cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002114 Glaisher's H' numbers.

Original entry on oeis.org

1, 11, 301, 15371, 1261501, 151846331, 25201039501, 5515342166891, 1538993024478301, 533289474412481051, 224671379367784281901, 113091403397683832932811, 67032545884354589043714301, 46211522130188693681603906171
Offset: 1

Views

Author

Keywords

Comments

a(n) mod 9 = 1,2,4,8,7,5 repeated period 6 (A153130, see also A001370). a(n) mod 10 = 1. - Paul Curtz, Sep 10 2009

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a := n -> (-1)^n*6^(2*n)*(Zeta(0,-n*2,1/3)-Zeta(0,-n*2, 5/6)):
    seq(a(n), n=1..14);
  • Mathematica
    Select[Rest[With[{nn=28},CoefficientList[Series[1/(2 (2Cos[x]-1)), {x,0,nn}], x]Range[0,nn]!]],#!=0&] (* Harvey P. Dale, Jul 27 2011 *)
    FullSimplify[Table[(-1)^(s+1) * BernoulliB[2*s] * (Zeta[2*s + 1, 1/6] - Zeta[2*s + 1, 5/6]) / (4*Pi*Sqrt[3]*Zeta[2*s]), {s, 1, 20}]]  (* Vaclav Kotesovec, May 05 2020 *)
  • Maxima
    a(n) := sum(sum(binomial(k,j)*(-1)^(k-j+1)*1/2^(j-1)*sum((-1)^(n)*binomial(j,i)*(2*i-j)^(2*n),i,0,floor((j-1)/2)),j,0,k)*(-2)^(k-1),k,1,2*n); /* Vladimir Kruchinin, Aug 05 2010 */

Formula

H'(n) = H(n)/3, where H(n)=2^(2n+1)*I(n) (see A002112) and e.g.f. for (-1)^n*I(n) is (3/2)/(1+exp(x)+exp(-x)) (see A047788, A047789).
H'(n) = A000436(n)/2^(2n+1). - Philippe Deléham, Jan 17 2004
For n > 0, H'(n) = Sum{k = 0..n, T(n, k)*9^(n-k)*2^(k-1) }; where DELTA is the operator defined in A084938, T(n, k) is the triangle, read by rows, given by :[0, 1, 0, 4, 0, 9, 0, 16, 0, 25, ...] DELTA [1, 0, 10, 0, 28, 0, 55, 0, 90, ..]= {1}; {0, 1}; {0, 1, 1}; {0, 1, 12, 1}; {0, 1, 63, 123, 1}; {0, 1, 274, 2366, 1234, 1}; ... For 1, 10, 28, 55, 90, 136, ... see A060544 or A060544. - Philippe Deléham, Jan 17 2004
E.g.f. 1/2*1/(2*cos(x)-1). a(n)=sum(sum(binomial(k,j)*(-1)^(k-j+1)*1/2^(j-1)*sum((-1)^(n)*binomial(j,i)*(2*i-j)^(2*n),i,0,floor((j-1)/2)),j,0,k)*(-2)^(k-1),k,1,2*n), n>0. - Vladimir Kruchinin, Aug 05 2010
E.g.f.: E(x)= x^2/(G(0)-x^2) ; G(k)= 2*(2*k+1)*(k+1) - x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction Euler's kind, 1-step ). - Sergei N. Gladkovskii, Jan 03 2012
If E(x)=Sum(k=0,1,..., a(k+1)*x^(2k+2)), then A002114(k) = a(k+1)*(2*k+2)!. - Sergei N. Gladkovskii, Jan 09 2012
a(n) ~ (2*n)! * 3^(2*n+1/2) / Pi^(2*n+1). - Vaclav Kotesovec, Feb 26 2014
a(n) = (-1)^n*6^(2*n)*(zeta(-n*2,1/3)-zeta(-n*2,5/6)), where zeta(a, z) is the generalized Riemann zeta function.
From Vaclav Kotesovec, May 05 2020: (Start)
a(n) = (2*n)! * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (sqrt(3)*(2*Pi)^(2*n+1)).
a(n) = (-1)^(n+1) * Bernoulli(2*n) * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (4*Pi*sqrt(3)*zeta(2*n)). (End)
Conjectural e.g.f.: Sum_{n >= 1} (-1)^n*Product_{k = 1..n} (1 - exp(A007310(k)*z) ) = z + 11*z^2/2! + 301*z^3/3! + .... - Peter Bala, Dec 09 2021