cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002190 Sum_{n>=0} a(n)*x^n/n!^2 = -log(BesselJ(0,2*sqrt(x))).

Original entry on oeis.org

0, 1, 1, 4, 33, 456, 9460, 274800, 10643745, 530052880, 32995478376, 2510382661920, 229195817258100, 24730000147369440, 3113066087894608560, 452168671458789789504, 75059305956331837485345, 14121026957032156557396000, 2988687741694684876495689040
Offset: 0

Views

Author

Keywords

Comments

Number of non-ambiguous trees, see the Aval et al. reference. - Joerg Arndt, May 11 2015

Examples

			-log( Sum_{n>=0} (-x)^n/n!^2 ) = x + x^2/2!^2 + 4*x^3/3!^2 + 33*x^4/4!^2 + 456*x^5/5!^2 + 9460*x^6/6!^2 + ... . -_Paul D. Hanna_, Oct 09 2010
		

References

  • Stany De Smedt, On Sloane's Sequence 1484, Saitama Math. J. 15 (1997), 9-13.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A101981. A diagonal of A217940.
Cf. A115368.

Programs

  • Maple
    a:= n-> coeff(series(-ln(BesselJ(0,2*sqrt(x))), x, n+1), x, n)*(n!)^2:
    seq(a(n), n=0..30); # Alois P. Heinz, Oct 10 2010
  • Mathematica
    nn=18; CoefficientList[Series[-Log[BesselJ[0, 2*Sqrt[x]]], {x, 0, nn}], x]*Table[n!^2, {n, 0, nn}] (* Jean-François Alcover, Jun 22 2011 *)
    Clear[q]; q[n_, 1] := (n-1)!^2; q[n_, k_] := q[n, k] = Sum[Binomial[n-1, j]*Binomial[n-1, j+1]*Sum[q[j+1, r]*q[n-j-1, k-r], {r, Max[1, -n+j+k+1], Min[j+1, k-1]}], { n-2}]; a[n_] := q[n, n]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 13 2013 *)
  • PARI
    N=66; x='x+O('x^N);
    f=-log(sum(n=0,N, (-x)^n/(n!)^2) );
    f=serlaplace(f);
    f=serlaplace(f);
    concat([0],Vec(f))
    \\ Joerg Arndt, May 17 2013
    
  • PARI
    \\ Terms starting from a(1)=1:
    N=33; B=vector(N);  B[1]=1;  b(j)=B[j+1];
    for(n=0,N-2, B[n+2]=sum(i=0,n, my(j=n-i); binomial(n+1,i)*binomial(n+1,j)*b(i)*b(j) ) ); B
    \\ Joerg Arndt, May 11 2015

Formula

Conjecture: G.f.: 1 = Sum_{n>=0} a(n+1)*A000108(n)*x^n*Sum_{k>=0} C(2*n+k,k)^2*(-x)^k. Compare with the following g.f of the Catalan numbers (A000108): 1 = Sum_{n>=0} A000108(n)*x^n*Sum_{k>=0} C(2*n+k,k)*(-x)^k. - Paul D. Hanna, Oct 10 2010
a(n) ~ n! * (n-1)! / r^n, where r = 1/4*BesselJZero[0,1]^2 = 1.44579649073669613... - Vaclav Kotesovec, Mar 02 2014
a(0) = 0; a(n) = -(-1)^n + (1/n) * Sum_{k=1..n-1} (-1)^(n-k-1) * binomial(n,k)^2 * k * a(k). - Ilya Gutkovskiy, Jul 15 2021

Extensions

More terms and better definition from Vladeta Jovovic, Jul 16 2006
Edited by Assoc. Editors of the OEIS, Oct 12 2010