A002234 Numbers k such that the Woodall number k*2^k - 1 is prime.
2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462, 512, 751, 822, 5312, 7755, 9531, 12379, 15822, 18885, 22971, 23005, 98726, 143018, 151023, 667071, 1195203, 1268979, 1467763, 2013992, 2367906, 3752948, 17016602
Offset: 1
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 115, p. 40, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B20.
- F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 95, 1983.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 241-242.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 139.
Links
- Ray Ballinger, Woodall Primes: Definition and Status.
- Ray Ballinger and Wilfrid Keller, Woodall numbers.
- C. K. Caldwell, Woodall Numbers.
- J. DeMaio, Generalized Woodall Numbers.
- Brady Haran and Matt Parker, 383 is cool, Numberphile video (2017).
- R. Ondrejka, The Top Ten: a Catalogue of Primal Configurations.
- PrimeGrid, PrimeGrid Primes: Subproject: (WOO) Woodall Prime Search.
- Matt Parker and Brady Haran, 383 and Woodall Primes, Numberphile video (2017).
- H. Riesel, Lucasian criteria for the primality of N=h.2^n-1, Math. Comp., 23 (1969), 869-875.
- Eric Weisstein's World of Mathematics, Woodall Number.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
Programs
-
PARI
is(n)=isprime(n<
Charles R Greathouse IV, Feb 07 2017
Extensions
a(27) communicated by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 15 2004
a(28) = 1195203 found by M. Rodenkirch; contributed by Eric W. Weisstein, Nov 29 2005
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(30)-a(33) from John Blazek, May 14 2009
a(34) = 17016602 communicated by Eric W. Weisstein, Mar 22 2018
Comments